Braun's lipoprotein

Last updated
Lipoprotein leucine-zipper
Identifiers
SymbolLPP
Pfam PF04728
InterPro IPR006817
CATH 1jccA00
SCOP2 d1jcca_ / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Use IPR016367 for full protein. E. coli protein is P69776 .

Braun's lipoprotein (BLP, Lpp, murein lipoprotein, or major outer membrane lipoprotein), found in some gram-negative cell walls, is one of the most abundant membrane proteins; its molecular weight is about 7.2 kDa. It is bound at its C-terminal end (a lysine) by a covalent bond to the peptidoglycan layer (specifically to diaminopimelic acid molecules [1] ) and is embedded in the outer membrane by its hydrophobic head (a cysteine with lipids attached). BLP tightly links the two layers and provides structural integrity to the outer membrane.

Contents

Characteristics

The gene encoding Braun's lipoprotein initially produces a protein composed of 78 amino acids, which includes a 20 amino acid signal peptide at the amino terminus. [2] The mature protein is 6 kDa in size. [3] Three monomers of Lpp assemble into a leucine zipper coiled-coil trimer. [4]

Large amounts of Braun's lipoprotein is present, more than any other protein in E. coli. [5] Unlike other lipoproteins, it is linked covalently to the peptidoglycan. [4] Lpp connects the outer membrane to the peptidoglycan. Lpp is anchored to the outer membrane by its amino-terminal lipid group. In E. coli, one third of Lpp proteins form a peptide bond via the side chain of its carboxy-terminal lysine with diaminopimelic acid in the peptidoglycan layer. [5] [6] The rest of the Lpp molecules are present in a "free" form unlinked to peptidoglycan. The free form is exposed on the surface of E. coli. [3]

Functions

Lpp, along with another OmpA-like lipoprotein called Pal/OprL ( P0A912 ), maintains the stability of the cell envelope by attaching the outer membrane to the cell wall. [3]

Lpp has been proposed as a virulence factor of Yersinia pestis , the cause of plague. [7] Y. pestis needs lpp for maximum survival in macrophages and to efficiently kill mouse models of bubonic and pneumonic plague. [8]

Immunology

Braun's lipoprotein binds to the pattern recognition receptor TLR2. Lpp induces adhesion of neutrophils to human endothelial cells by activating the latter. [9]

Related Research Articles

<span class="mw-page-title-main">Cell wall</span> Outermost layer of some cells

A cell wall is a structural layer that surrounds some cell types, found immediately outside the cell membrane. It can be tough, flexible, and sometimes rigid. Primarily, it provides the cell with structural support, shape, protection, and functions as a selective barrier. Another vital role of the cell wall is to help the cell withstand osmotic pressure and mechanical stress. While absent in many eukaryotes, including animals, cell walls are prevalent in other organisms such as fungi, algae and plants, and are commonly found in most prokaryotes, with the exception of mollicute bacteria.

<span class="mw-page-title-main">Gram-negative bacteria</span> Group of bacteria that do not retain the Gram stain used in bacterial differentiation

Gram-negative bacteria are bacteria that, unlike gram-positive bacteria, do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. Their defining characteristic is their cell envelope, which consists of a thin peptidoglycan cell wall sandwiched between an inner (cytoplasmic) membrane and an outer membrane. These bacteria are found in all environments that support life on Earth.

Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like layer (sacculus) that surrounds the bacterial cytoplasmic membrane. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). Attached to the N-acetylmuramic acid is an oligopeptide chain made of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer. Peptidoglycan serves a structural role in the bacterial cell wall, giving structural strength, as well as counteracting the osmotic pressure of the cytoplasm. This repetitive linking results in a dense peptidoglycan layer which is critical for maintaining cell form and withstanding high osmotic pressures, and it is regularly replaced by peptidoglycan production. Peptidoglycan hydrolysis and synthesis are two processes that must occur in order for cells to grow and multiply, a technique carried out in three stages: clipping of current material, insertion of new material, and re-crosslinking of existing material to new material.

The periplasm is a concentrated gel-like matrix in the space between the inner cytoplasmic membrane and the bacterial outer membrane called the periplasmic space in Gram-negative bacteria. Using cryo-electron microscopy it has been found that a much smaller periplasmic space is also present in Gram-positive bacteria, between cell wall and the plasma membrane. The periplasm may constitute up to 40% of the total cell volume of gram-negative bacteria, but is a much smaller percentage in gram-positive bacteria.

The cell envelope comprises the inner cell membrane and the cell wall of a bacterium. In Gram-negative bacteria an outer membrane is also included. This envelope is not present in the Mollicutes where the cell wall is absent.

Biosynthesis, i.e., chemical synthesis occurring in biological contexts, is a term most often referring to multi-step, enzyme-catalyzed processes where chemical substances absorbed as nutrients serve as enzyme substrates, with conversion by the living organism either into simpler or more complex products. Examples of biosynthetic pathways include those for the production of amino acids, lipid membrane components, and nucleotides, but also for the production of all classes of biological macromolecules, and of acetyl-coenzyme A, adenosine triphosphate, nicotinamide adenine dinucleotide and other key intermediate and transactional molecules needed for metabolism. Thus, in biosynthesis, any of an array of compounds, from simple to complex, are converted into other compounds, and so it includes both the catabolism and anabolism of complex molecules. Biosynthetic processes are often represented via charts of metabolic pathways. A particular biosynthetic pathway may be located within a single cellular organelle, while others involve enzymes that are located across an array of cellular organelles and structures.

Pathogen-associated molecular patterns (PAMPs) are small molecular motifs conserved within a class of microbes, but not present in the host. They are recognized by toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) in both plants and animals. This allows the innate immune system to recognize pathogens and thus, protect the host from infection.

<span class="mw-page-title-main">Bacterial outer membrane</span> Plasma membrane found in gram-negative bacteria

The bacterial outer membrane is found in gram-negative bacteria. Gram-negative bacteria form two lipid bilayers in their cell envelopes - an inner membrane (IM) that encapsulates the cytoplasm, and an outer membrane (OM) that encapsulates the periplasm.

<span class="mw-page-title-main">Pseudopeptidoglycan</span>

Pseudopeptidoglycan is a major cell wall component of some Archaea that differs from bacterial peptidoglycan in chemical structure, but resembles bacterial peptidoglycan in function and physical structure. Pseudopeptidoglycan, in general, is only present in a few methanogenic archaea. The basic components are N-acetylglucosamine and N-acetyltalosaminuronic acid, which are linked by β-1,3-glycosidic bonds.

A bacterium, despite its simplicity, contains a well-developed cell structure which is responsible for some of its unique biological structures and pathogenicity. Many structural features are unique to bacteria and are not found among archaea or eukaryotes. Because of the simplicity of bacteria relative to larger organisms and the ease with which they can be manipulated experimentally, the cell structure of bacteria has been well studied, revealing many biochemical principles that have been subsequently applied to other organisms.

<span class="mw-page-title-main">Lysin</span>

Lysins, also known as endolysins or murein hydrolases, are hydrolytic enzymes produced by bacteriophages in order to cleave the host's cell wall during the final stage of the lytic cycle. Lysins are highly evolved enzymes that are able to target one of the five bonds in peptidoglycan (murein), the main component of bacterial cell walls, which allows the release of progeny virions from the lysed cell. Cell-wall-containing Archaea are also lysed by specialized pseudomurein-cleaving lysins, while most archaeal viruses employ alternative mechanisms. Similarly, not all bacteriophages synthesize lysins: some small single-stranded DNA and RNA phages produce membrane proteins that activate the host's autolytic mechanisms such as autolysins.

<span class="mw-page-title-main">Virulence-related outer membrane protein family</span>

Virulence-related outer membrane proteins, or outer surface proteins (Osp) in some contexts, are expressed in the outer membrane of gram-negative bacteria and are essential to bacterial survival within macrophages and for eukaryotic cell invasion.

<span class="mw-page-title-main">Diaminopimelic acid</span> Chemical compound

Diaminopimelic acid (DAP) is an amino acid, representing an epsilon-carboxy derivative of lysine. meso-α,ε-Diaminopimelic acid is the last intermediate in the biosynthesis of lysine and undergoes decarboxylation by diaminopimelate decarboxylase to give the final product.

Eurybacteria is a taxon created by Cavalier-Smith, which includes several groups of Gram-negative bacteria. In this model, it is the ancestor of gram positive bacteria. Their endospores are characterized by producing and presenting external flagella or mobility by bacterial displacement.

Omptins are a family of bacterial proteases. They are aspartate proteases, which cleave peptides with the use of a water molecule. Found in the outer membrane of gram-negative enterobacteria such as Shigella flexneri, Yersinia pestis, Escherichia coli, and Salmonella enterica. Omptins consist of a widely conserved beta barrel spanning the membrane with 5 extracellular loops. These loops are responsible for the various substrate specificities. These proteases rely upon binding of lipopolysaccharide for activity.

<span class="mw-page-title-main">OmpA domain</span>

In molecular biology, the OmpA domain is a conserved protein domain with a beta/alpha/beta/alpha-beta(2) structure found in the C-terminal region of many Gram-negative bacterial outer membrane proteins, such as porin-like integral membrane proteins, small lipid-anchored proteins, and MotB proton channels. The N-terminal half of these proteins is variable although some of the proteins in this group have the OmpA-like transmembrane domain at the N terminus. OmpA from Escherichia coli is required for pathogenesis, and can interact with host receptor molecules. MotB serve two functions in E. coli, the MotA(4)-MotB(2) complex attaches to the cell wall via MotB to form the stator of the flagellar motor, and the MotA-MotB complex couples the flow of ions across the cell membrane to movement of the rotor.

<span class="mw-page-title-main">YadA bacterial adhesin protein domain</span>

In molecular biology, YadA is a protein domain which is short for Yersinia adhesin A. These proteins have strong sequence and structural homology, particularly at their C-terminal end. The function is to promote their pathogenicity and virulence in host cells, though cell adhesion. YadA is found in three pathogenic species of Yersinia, Y. pestis,Y. pseudotuberculosis, and Y. enterocolitica. The YadA domain is encoded for by a virulence plasmid in Yersinia, which encodes a type-III secretion (T3S) system consisting of the Ysc injectisome and the Yop effectors.

<span class="mw-page-title-main">Non-proteinogenic amino acids</span> Are not naturally encoded in the genome

In biochemistry, non-coded or non-proteinogenic amino acids are distinct from the 22 proteinogenic amino acids, which are naturally encoded in the genome of organisms for the assembly of proteins. However, over 140 non-proteinogenic amino acids occur naturally in proteins and thousands more may occur in nature or be synthesized in the laboratory. Chemically synthesized amino acids can be called unnatural amino acids. Unnatural amino acids can be synthetically prepared from their native analogs via modifications such as amine alkylation, side chain substitution, structural bond extension cyclization, and isosteric replacements within the amino acid backbone. Many non-proteinogenic amino acids are important:

The bacterial murein precursor exporter (MPE) family is a member of the cation diffusion facilitator (CDF) superfamily of membrane transporters. Members of the MPE family are found in a large variety of Gram-negative and Gram-positive bacteria and facilitate the translocation of lipid-linked murein precursors. A representative list of proteins belonging to the MPE family can be found in the Transporter Classification Database.

<span class="mw-page-title-main">OBPgp279</span>

OBPgp279 is an endolysin that hydrolyzes peptidoglycan, a major constituent in bacterial membrane. OBPgp279 is found in Pseudomonas fluorescens phage OBP, which belongs in the Myoviridae family of bacteriophages. Because of its role in hydrolyzing the peptidoglycan layer, OBPgp279 is a key enzyme in the lytic cycle of the OBP bacteriophage; it allows the bacteriophage to lyse its host internally to escape. Unlike other endolysins, OBPgp279 does not rely on holins to perforate the inner bacterial membrane in order to reach the peptidoglycan layer. Although OBPgp279 is not a well-studied enzyme, it has garnered interest as a potential antibacterial protein due to its activity against multidrug-resistant gram-negative bacteria.

References

  1. Seltmann, Guntram; Holst, Otto (2002). The Bacterial Cell Wall. Berlin: Springer. pp. 81–82. ISBN   3-540-42608-6.
  2. Dramsi S, Magnet S, Davison S, Arthur M (2008). "Covalent attachment of proteins to peptidoglycan". FEMS Microbiology Reviews. 32 (2): 307–20. doi: 10.1111/j.1574-6976.2008.00102.x . PMID   18266854.
  3. 1 2 3 Konovalova A, Silhavy TJ (2015). "Outer membrane lipoprotein biogenesis: Lol is not the end". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 370 (1679). doi:10.1098/rstb.2015.0030. PMC   4632606 . PMID   26370942.
  4. 1 2 Kovacs-Simon A, Titball RW, Michell SL (2011). "Lipoproteins of bacterial pathogens". Infection and Immunity. 79 (2): 548–61. doi:10.1128/IAI.00682-10. PMC   3028857 . PMID   20974828.
  5. 1 2 Silhavy TJ, Kahne D, Walker S (2010). "The bacterial cell envelope". Cold Spring Harbor Perspectives in Biology. 2 (5): a000414. doi:10.1101/cshperspect.a000414. PMC   2857177 . PMID   20452953.
  6. Vollmer, Waldemar (2007). "Structure and biosynthesis of the murein (peptidoglycan) sacculus". In Ehrmann, Michael (ed.). The Periplasm ([Online-Ausg.]. ed.). Washington, DC: ASM Press. pp. 198–213. ISBN   9781555813987.
  7. Butler T (2009). "Plague into the 21st century". Clinical Infectious Diseases. 49 (5): 736–42. doi: 10.1086/604718 . PMID   19606935.
  8. Smiley ST (2008). "Immune defense against pneumonic plague". Immunological Reviews. 225: 256–71. doi:10.1111/j.1600-065X.2008.00674.x. PMC   2804960 . PMID   18837787.
  9. McIntyre TM, Prescott SM, Weyrich AS, Zimmerman GA (2003). "Cell-cell interactions: leukocyte-endothelial interactions". Current Opinion in Hematology. 10 (2): 150–8. doi:10.1097/00062752-200303000-00009. PMID   12579042.