Broselow tape

Last updated
Broselow tape
BTape3.jpg
The Broselow Tape and associated system

The Broselow Tape, also called the Broselow pediatric emergency tape, is a color-coded length-based tape measure that is used throughout the world for pediatric emergencies. The Broselow Tape relates a child's height as measured by the tape to their weight to provide medical instructions including medication dosages, the size of the equipment that should be used, and the level of energy when using a defibrillator. Particular to children is the need to calculate all these therapies for each child individually. In an emergency, the time required to do this detracts from valuable time needed to evaluate, initiate, and monitor patient treatment. [1] The Broselow Tape is designed for children up to approximately 12 years of age who have a maximum weight of roughly 36 kg (79 lb). The Broselow Tape is recognized in most medical textbooks and publications as a standard for the emergency treatment of children. [2]

Contents

Usage

BTape1.jpg
Properly measuring a child with the Broselow Tape
BTape2.jpg
Color coded equipment drawers based on the Broselow Tape

To use the Broselow Tape effectively, the child must be lying down. [3] Use one hand to hold the red end of the tape, so it is even with the child's head. (Remember: "red to head"). While maintaining one hand on the red portion at the top of the child's head, use your free hand to run the tape down the length of the child's body until it is even with their heels (not toes). The tape that is level with the child's heels will provide their approximate weight in kilograms and their color zone.[ citation needed ]

As the tape is not completely accurate, care is required with its use. [4]

Accuracy

The Broselow Tape is based on the relationship between weight and length; each color zone estimates the 50th percentile weight for length, which for practical purposes estimates the ideal body weight (IBW) for emergency dosing. Because of the recent obesity epidemic, concerns have been raised as to the accuracy of the tape to determine acceptable weights and subsequently acceptable doses of emergency medications.[ citation needed ]

The most recent version of the Broselow Tape incorporates updated length/weight zones based on the most current National Health and Nutrition Examination Survey data set.[ citation needed ] Utilizing this data set to examine Broselow Tape predictions of actual body weight with the revised zones reveals that approximately 65% of the time the patient's measured length places them in the correct zone for actual weight. Of the remaining 35%, ~20% fall into the heavier Broselow-Luten zone above and 13% fall into the lighter zone below, with < 1% outliers falling greater than 1 zone from predicted. If the healthcare provider incorporates a visual estimate of body habitus into the prediction, the accuracy of the estimate of actual patient weight is improved, as confirmed in multiple studies. Specifically, for drug dosing, the patient's length-based dosing zone can be adjusted up one color zone if the child appears overweight. Thus, incorporating a visual estimate of whether the child is overweight provides a simple method to predict actual patient weight that appears to be clinically relevant given the rise in obesity in the U.S. [ citation needed ]

Although some medications are best dosed by actual body weight (e.g., succinylcholine), most resuscitation medications are distributed in lean body mass (e.g., epinephrine, sodium bicarbonate, calcium, magnesium, etc.) so that IBW as accurately predicted by length, not the actual body weight, would appear preferable for dosing. For most resuscitation medications, the optimal dose is not known, and doses based on IBW or actual weight are likely equally effective.[ citation needed ]

The PALS guidelines comment on this issue: "There are no data regarding the safety or efficacy of adjusting the doses of resuscitation medications in obese patients. Therefore, regardless of the patient’s habitus, use the actual body weight for calculating initial resuscitation drug doses or use a body length tape with pre-calculated doses." [5]

Studies on the accuracy of predicting endotracheal tube sizes consistently demonstrate the superiority of length predictions over other methods. Unlike medication dosing, body habitus therefore does not affect the accuracy of the prediction.[ citation needed ]

Recommendation for how to use of the Broselow tape.

Utilizing clinical judgment applied to each situation:

  1. Measure child to identify weight/color zone.
  2. If a child appears overweight consider utilizing one zone higher for dosing only.
  3. Always use the tape measured length zone for equipment selection regardless of body habitus.

Multiple studies have been conducted regarding the effectiveness of the Broselow Tape. In 2012, a study with 572 enrolled subjects published that paramedic Broselow measurements correlated well with both scale and ED measurements, underscoring its utility in the prehospital setting. [6] There are debates about accuracy in actual weight estimation and its relevance as noted above. The tape is still considered by some to be the best tool for predicting actual body weight. [7]

Design

The original Broselow tape was divided into 2.5 kg (5.5 lb) zones for medication doses and eight color zones for equipment selection. Subsequent versions of the tape combined dosing and equipment zones such that the eight color zones contained both dosing and equipment information, thus creating a simple visual system for medication and equipment which is used in most hospitals and ambulances.[ citation needed ]

The following list identifies which color zones correlate with each estimated weight zone in kilograms (kg) and pounds (lb).

ColorAgeHeight, cmEstimated weight, kgEstimated weight, lb
GreyNewborn46.8-51.936.6
51.9-55.048.8
2 month55.0-59.2511
Pink4 month59.2-66.96-713-15
Red8 month66.9-74.28-917-20
Purple1 year74.2-83.810-1122-24
Yellow2 years83.8-95.412-1426-30
White4 years95.4-108.315-1833-40
Blue6 years108.3-121.519-2342-50
Orange8 years121.5-130.724-2953-64
Green10 years130.7-143.330-3666-80

History

Emergency physicians James Broselow and Robert Luten struggled with solving these issues related to the emergency treatment of children in the early 1980s. The result was the invention by Broselow of a home-made prototype version of the tape in 1985. Broselow joined with Luten, an academic physician from the University of Florida and member of the newly formed pediatric advanced life support subcommittee, to do the foundational studies upon which the tape was based and to develop and update the tape over the years. [8] [9]

The tape provides pre-calculated medication doses, effectively eliminating the potential errors associated with pediatric emergent dosing preparation and administration. This benefit has had major implications in recent years, given the prevalence and magnitude of medication errors. Medical errors are a greater threat to children than adults because their organs are smaller and still developing. An estimated 35% of pediatric patients [10] are incorrectly dosed by EMS providers. Tenfold mathematical errors due to incorrect calculations are a much greater threat to children than adults. Due to the high level of incorrect calculation errors, alternative pediatric emergency tapes Archived 2019-01-20 at the Wayback Machine that can be customized have gained popularity. A tenfold adult overdose of a standard adult medication would require multiple syringes and tends, therefore, to be obvious to a caregiver, effectively warning of the error. In contrast, for a small child both a 1x correct dose and a 10x overdose of a drug can be administered in the same syringe, thus providing no clue as to a potential error. Furthermore, pediatric emergency care is especially prone to error due to the chaotic nature and stress associated with the emergency setting. [11]

Related Research Articles

<span class="mw-page-title-main">Cardiac arrest</span> Sudden stop in effective blood flow due to the failure of the heart to beat

Cardiac arrest, also known as sudden cardiac arrest, is when the heart suddenly and unexpectedly stops beating. As a result blood will not be pumped around the body in normal circulation, consciousness will be rapidly lost, and breathing will be abnormal or absent. Without immediate intervention such as cardiopulmonary resuscitation (CPR), and possibly defibrillation, death will occur within minutes.

<span class="mw-page-title-main">Emergency department</span> Medical treatment facility specializing in emergency medicine

An emergency department (ED), also known as an accident and emergency department (A&E), emergency room (ER), emergency ward (EW) or casualty department, is a medical treatment facility specializing in emergency medicine, the acute care of patients who present without prior appointment; either by their own means or by that of an ambulance. The emergency department is usually found in a hospital or other primary care center.

Human body weight is a person's mass or weight.

<span class="mw-page-title-main">Airway management</span> Medical procedure ensuring an unobstructed airway

Airway management includes a set of maneuvers and medical procedures performed to prevent and relieve airway obstruction. This ensures an open pathway for gas exchange between a patient's lungs and the atmosphere. This is accomplished by either clearing a previously obstructed airway; or by preventing airway obstruction in cases such as anaphylaxis, the obtunded patient, or medical sedation. Airway obstruction can be caused by the tongue, foreign objects, the tissues of the airway itself, and bodily fluids such as blood and gastric contents (aspiration).

In physiology and medicine, the body surface area (BSA) is the measured or calculated surface area of a human body. For many clinical purposes, BSA is a better indicator of metabolic mass than body weight because it is less affected by abnormal adipose mass. Nevertheless, there have been several important critiques of the use of BSA in determining the dosage of medications with a narrow therapeutic index, such as chemotherapy.

<span class="mw-page-title-main">Major trauma</span> Injury that could cause prolonged disability or death

Major trauma is any injury that has the potential to cause prolonged disability or death. There are many causes of major trauma, blunt and penetrating, including falls, motor vehicle collisions, stabbing wounds, and gunshot wounds. Depending on the severity of injury, quickness of management, and transportation to an appropriate medical facility may be necessary to prevent loss of life or limb. The initial assessment is critical, and involves a physical evaluation and also may include the use of imaging tools to determine the types of injuries accurately and to formulate a course of treatment.

<span class="mw-page-title-main">Inhaler</span> Medical device

An inhaler is a medical device used for delivering medicines into the lungs through the work of a person's breathing. This allows medicines to be delivered to and absorbed in the lungs, which provides the ability for targeted medical treatment to this specific region of the body, as well as a reduction in the side effects of oral medications. There are a wide variety of inhalers, and they are commonly used to treat numerous medical conditions with asthma and chronic obstructive pulmonary disease (COPD) being among the most notable.

<span class="mw-page-title-main">Intraosseous infusion</span> Medical procedure of injecting medications into bone marrow

Intraosseous infusion (IO) is the process of injecting medications, fluids, or blood products directly into the marrow of a bone; this provides a non-collapsible entry point into the systemic venous system. The intraosseous infusion technique is used to provide fluids and medication when intravenous access is not available or not feasible. Intraosseous infusions allow for the administered medications and fluids to go directly into the vascular system. The IO route of fluid and medication administration is an alternative to the preferred intravascular route when the latter cannot be established promptly in emergent situations. Intraosseous infusions are used when people have compromised intravenous access and need immediate delivery of life-saving fluids and medications.

<span class="mw-page-title-main">Paramedics in the United States</span> Overview of paramedics in the United States of America

In the United States, the paramedic is a allied health professional whose primary focus is to provide advanced emergency medical care for patients who access Emergency Medical Services (EMS). This individual possesses the complex knowledge and skills necessary to provide patient care and transportation. Paramedics function as part of a comprehensive EMS response under physician medical direction. Paramedics often serve in a prehospital role, responding to Public safety answering point (9-1-1) calls in an ambulance. The paramedic serves as the initial entry point into the health care system. A standard requirement for state licensure involves successful completion of a nationally accredited Paramedic program at the certificate or associate degree level.

In medicine, intravascular volume status refers to the volume of blood in a patient's circulatory system, and is essentially the blood plasma component of the overall volume status of the body, which otherwise includes both intracellular fluid and extracellular fluid. Still, the intravascular component is usually of primary interest, and volume status is sometimes used synonymously with intravascular volume status.

Clark's rule is a medical term referring to a mathematical formula used to calculate the proper dosage of medicine for children aged 2–17 based on the weight of the patient and the appropriate adult dose. The formula was named after Cecil Belfield Clarke (1894–1970), a Barbadian physician who practiced throughout the UK, the West Indies and Ghana.

Pediatric advanced life support (PALS) is a course offered by the American Heart Association (AHA) for health care providers who take care of children and infants in the emergency room, critical care and intensive care units in the hospital, and out of hospital. The course teaches healthcare providers how to assess injured and sick children and recognize and treat respiratory distress/failure, shock, cardiac arrest, and arrhythmias.

<span class="mw-page-title-main">Trauma in children</span> Medical condition

Trauma in children, also known as pediatric trauma, refers to a traumatic injury that happens to an infant, child or adolescent. Because of anatomical and physiological differences between children and adults the care and management of this population differs.

Paediatric radiology is a subspecialty of radiology involving the imaging of fetuses, infants, children, adolescents and young adults. Many paediatric radiologists practice at children's hospitals.

The Pediatric Assessment Triangle or PAT is a tool used in emergency medicine to form a general impression of a pediatric patient. In emergency medicine, a general impression is formed the first time the medical professional views the patient, usually within seconds. The PAT is a method of quickly determining the acuity of the child, identifying the type of pathophysiology, e.g., respiratory distress, respiratory failure, or shock and establishing urgency for treatment. The PAT also drives initial resuscitation and stabilization efforts based on the assessment findings.

<span class="mw-page-title-main">Rearrest</span>

Rearrest is a phenomenon that involves the resumption of a lethal cardiac dysrhythmia after successful return of spontaneous circulation (ROSC) has been achieved during the course of resuscitation. Survival to hospital discharge rates are as low as 7% for cardiac arrest in general and although treatable, rearrest may worsen these survival chances. Rearrest commonly occurs in the out-of-hospital setting under the treatment of health care providers.

James Broselow is an American emergency physician, an assistant professor, an inventor and an entrepreneur. He and fellow emergency physician Robert Luten, M.D., are best known in the medical community for inventing the Broselow Tape in 1985, which was the first tool developed relating a pediatric patient's height to their weight in order to “determine the size of equipment, supplies, and dosages of medication to use…” during emergencies. The Broselow Tape is featured in many medical textbooks and reference manuals as the standard for length based weight measures.

Renal angina is a clinical methodology to risk stratify patients for the development of persistent and severe acute kidney injury (AKI). The composite of risk factors and early signs of injury for AKI, renal angina is used as a clinical adjunct to help optimize the use of novel AKI biomarker testing. The term angina from Latin and from the Greek ankhone ("strangling") are utilized in the context of AKI to denote the development of injury and the choking off of kidney function. Unlike angina pectoris, commonly caused due to ischemia of the heart muscle secondary to coronary artery occlusion or vasospasm, renal angina carries no obvious physical symptomatology. Renal angina was derived as a conceptual framework to identify evolving AKI. Like acute coronary syndrome which precedes or is a sign of a heart attack, renal angina is used as a herald sign for a kidney attack. Detection of renal angina is performed by calculating the renal angina index.

<span class="mw-page-title-main">Wallace rule of nines</span> Estimate of total body surface area of burns

The Wallace rule of nines is a tool used in pre-hospital and emergency medicine to estimate the total body surface area (BSA) affected by a burn. In addition to determining burn severity, the measurement of burn surface area is important for estimating patients' fluid requirements and determining hospital admission criteria.

The JumpSTART pediatric triage MCI triage tool is a variation of the simple triage and rapid treatment (START) triage system. Both systems are used to sort patients into categories at mass casualty incidents (MCIs). However, JumpSTART was designed specifically for triaging children in disaster settings. Though JumpSTART was developed for use in children from infancy to age 8, where age is not immediately obvious, it is used in any patient who appears to be a child.

References

  1. Luten R, Wears RL, Broselow J, Croskerry P, Joseph MM, Frush K (August 2002). "Managing the unique size-related issues of pediatric resuscitation: reducing cognitive load with resuscitation aids". Academic Emergency Medicine. 9 (8): 840–7. doi: 10.1197/aemj.9.8.840 . PMID   12153892.
  2. Google Book Search for Broselow Tape references [ unreliable medical source? ]
  3. Frush, Karen. "Study Packet for the Correct Use of the Broselow™ Pediatric Emergency Tape" (PDF). Duke University Medical Center. Archived from the original (PDF) on 2017-02-18. Retrieved 2014-09-13.
  4. Wells, M; Goldstein, LN; Bentley, A; Basnett, S; Monteith, I (25 September 2017). "The accuracy of the Broselow tape as a weight estimation tool and a drug-dosing guide - A systematic review and meta-analysis". Resuscitation. 121: 9–33. doi:10.1016/j.resuscitation.2017.09.026. PMID   28958796.
  5. Kleinman ME, Chameides L, Schexnayder SM, et al. (November 2010). "Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 122 (18 Suppl 3): S876–908. doi: 10.1161/CIRCULATIONAHA.110.971101 . PMID   20956230.
  6. Heyming, Theodore; Bosson, Nichole; Kurobe, Aileen; Kaji, Amy H.; Gausche-Hill, Marianne (6 June 2012). "Accuracy of Paramedic Broselow Tape Use in the Prehospital Setting". Prehospital Emergency Care. 16 (3): 374–380. doi:10.3109/10903127.2012.664247. PMID   22443376. S2CID   34468986.
  7. Meguerdichian MJ, Clapper TC (August 2012). "The Broselow tape as an effective medication dosing instrument: a review of the literature". Journal of Pediatric Nursing. 27 (4): 416–20. doi:10.1016/j.pedn.2012.04.009. PMID   22579781.
  8. Luten RC, Wears RL, Broselow J, et al. (August 1992). "Length-based endotracheal tube and emergency equipment in pediatrics". Annals of Emergency Medicine. 21 (8): 900–4. doi:10.1016/S0196-0644(05)82924-5. PMID   1497153.
  9. Lubitz DS, Seidel JS, Chameides L, Luten RC, Zaritsky AL, Campbell FW (June 1988). "A rapid method for estimating weight and resuscitation drug dosages from length in the pediatric age group". Annals of Emergency Medicine. 17 (6): 576–81. doi:10.1016/S0196-0644(88)80396-2. PMID   3377285.
  10. Kaufmann, Jost; Laschat, Michael; Wappler, Frank (2016-10-27). "Medication Errors in Pediatric Emergencies". Deutsches Ärzteblatt International. 109 (38): 609–616. doi:10.3238/arztebl.2012.0609. ISSN   1866-0452. PMC   3471264 . PMID   23093991.
  11. Park, Kyung S. (1997). "Human error". In Salvendy, Gavriel (ed.). Handbook of human factors and ergonomics (2nd ed.). New York: Wiley. pp. 150–73. ISBN   978-0-471-11690-5.