Tracheal tube

Last updated
Tracheal tube
ICD-9-CM 96.04

A tracheal tube is a catheter that is inserted into the trachea for the primary purpose of establishing and maintaining a patent airway and to ensure the adequate exchange of oxygen and carbon dioxide.

Contents

Many different types of tracheal tubes are available, suited for different specific applications:

History

Portex Medical (England and France) produced the first cuff-less plastic 'Ivory' endotracheal tubes. [1] Ivan Magill later added a cuff (these were glued on by hand to make the famous Blue-line tube copied by many other manufacturers). Maeterlinck GmbH developed the disposable endotracheal tube and produced many design variations, adding the 'Murphy Eye' to their tubes in case of 'accidental' placement of the tube to avoid right bronchial occlusion. David S. Sheridan was one of the manufacturers of the American markets "disposable" plastic tracheal tube now used routinely in surgery. Previously, red rubber (Rusch-Germany) tubes were used, then sterilized for re-use. [2]

Applications

Tracheal tubes can also be used to deliver oxygen in higher concentrations than found in air, or to administer other gases such as helium, nitric oxide, nitrous oxide, xenon, or certain volatile anesthetic agents such as desflurane, isoflurane, or sevoflurane. Tracheal tubes may also be used as a route for administration of certain medications such as salbutamol, atropine, epinephrine, ipratropium, and lidocaine. Tracheal tubes are commonly used for airway management in the settings of general anesthesia, critical care, mechanical ventilation, and emergency medicine. [3]

Endotracheal tube

AgeWeight(Inner)
diameter
(mm)
Preterm 3 kg2.5–3.0 [4]
0–6 months3.5 kg3.0–3.5 [4]
6–12 months7 kg3.5–4.0 [4]
1–3 years10–12 kg4.0–4.5 [4]
4–7 years16–18 kg5.0–5.5 [4]
8–10 years24–30 kg5.5–6.5 [4]
Adult female7.0–7.5 [5]
Adult male8.0–8.5 [5]
A typical cuffed endotracheal tube, constructed of polyvinyl chloride Sondeintubation.jpg
A typical cuffed endotracheal tube, constructed of polyvinyl chloride
A Carlens double-lumen endotracheal tube, commonly used for thoracic surgical operations such as VATS lobectomy Carlens.jpg
A Carlens double-lumen endotracheal tube, commonly used for thoracic surgical operations such as VATS lobectomy

Most endotracheal tubes today are constructed of polyvinyl chloride, but specialty tubes constructed of silicone rubber, latex rubber, or stainless steel are also widely available. Most tubes have an inflatable cuff to seal the trachea and bronchial tree against air leakage and aspiration of gastric contents, blood, secretions, and other fluids. Uncuffed tubes are also available, though their use is limited mostly to pediatric patients (in small children, the cricoid cartilage, the narrowest portion of the pediatric airway, often provides an adequate seal for mechanical ventilation).

Types of endotracheal tubes include oral or nasal, cuffed or uncuffed, preformed (e.g. RAE (Ring, Adair, and Elwyn) tube), reinforced tubes, and double-lumen endobronchial tubes. For human use, tubes range in size from 2 to 10.5 mm in internal diameter (ID). The size is chosen based on the patient's body size, with the smaller sizes being used for pediatric and neonatal patients. Tubes larger than 6 mm ID usually have an inflatable cuff. Originally made from red rubber, most modern tubes are made from polyvinyl chloride. Those placed in a laser field may be flexometallic. Robertshaw (and others) developed double-lumen endobronchial tubes for thoracic surgery. These allow single-lung ventilation while the other lung is collapsed to make surgery easier. The deflated lung is re-inflated as surgery finishes to check for fistulas (tears). Another type of endotracheal tube has a small second lumen opening above the inflatable cuff, which can be used for suction of the nasopharngeal area and above the cuff to aid extubation (removal). This allows suctioning of secretions that sit above the cuff which helps reduce the risk of chest infections in long-term intubated patients.

The "armored" endotracheal tubes are cuffed, wire-reinforced, silicone rubber tubes that are quite flexible but yet difficult to compress or kink. This can make them useful for situations in which the trachea is anticipated to remain intubated for a prolonged duration, or if the neck is to remain flexed during surgery. Polyvinyl chloride tubes are relatively stiff in comparison. Preformed tubes (such as the oral and nasal RAE tubes, named after the inventors Ring, Adair and Elwyn) are also widely available for special applications. These may also be constructed of polyvinyl chloride or wire-reinforced silicone rubber. Other tubes (such as the Bivona Fome-Cuf tube) are designed specifically for use in laser surgery in and around the airway. Various types of double-lumen endotracheal (actually, endobronchial) tubes have been developed (Carlens, [6] White, Robertshaw, etc.) for ventilating each lung independently—this is useful during pulmonary and other thoracic operations.

Tracheostomy tube

Several types of tracheostomy tubes are available, depending on the requirements of the patient, including Shiley, Bivona (a silicon tube with metal rings that are good for airways with damage to the tracheal rings or otherwise not straight), and fenestrated. [7]

Tracheal button

A tracheal button is generally used in people with severe obstructive sleep apnea, who often wear this device during waking hours and remove it while sleeping to ensure a patent airway and reduce the risk of asphyxiation. Since the tube does not extend far into the trachea, it is easy to breathe and speak with the device in place.

See also

Related Research Articles

<span class="mw-page-title-main">Tracheal intubation</span> Placement of a tube into the trachea

Tracheal intubation, usually simply referred to as intubation, is the placement of a flexible plastic tube into the trachea (windpipe) to maintain an open airway or to serve as a conduit through which to administer certain drugs. It is frequently performed in critically injured, ill, or anesthetized patients to facilitate ventilation of the lungs, including mechanical ventilation, and to prevent the possibility of asphyxiation or airway obstruction.

<span class="mw-page-title-main">Mechanical ventilation</span> Method to mechanically assist or replace spontaneous breathing

Mechanical ventilation or assisted ventilation is the medical term for using a ventilator machine to fully or partially provide artificial ventilation. Mechanical ventilation helps move air into and out of the lungs, with the main goal of helping the delivery of oxygen and removal of carbon dioxide. Mechanical ventilation is used for many reasons, including to protect the airway due to mechanical or neurologic cause, to ensure adequate oxygenation, or to remove excess carbon dioxide from the lungs. Various healthcare providers are involved with the use of mechanical ventilation and people who require ventilators are typically monitored in an intensive care unit.

<span class="mw-page-title-main">Tracheotomy</span> Temporary surgical incision to create an airway into the trachea

Tracheotomy, or tracheostomy, is a surgical airway management procedure which consists of making an incision (cut) on the anterior aspect (front) of the neck and opening a direct airway through an incision in the trachea (windpipe). The resulting stoma (hole) can serve independently as an airway or as a site for a tracheal tube or tracheostomy tube to be inserted; this tube allows a person to breathe without the use of the nose or mouth.

<span class="mw-page-title-main">Laryngeal mask airway</span> Medical device for maintaining an open airway

A laryngeal mask airway (LMA), also known as laryngeal mask, is a medical device that keeps a patient's airway open during anaesthesia or while they are unconscious. It is a type of supraglottic airway device. They are most commonly used by anaesthetists to channel oxygen or inhalational anaesthetic to the lungs during surgery and in the pre-hospital setting for unconscious patients.

<span class="mw-page-title-main">Airway management</span> Medical procedure ensuring an unobstructed airway

Airway management includes a set of maneuvers and medical procedures performed to prevent and relieve airway obstruction. This ensures an open pathway for gas exchange between a patient's lungs and the atmosphere. This is accomplished by either clearing a previously obstructed airway; or by preventing airway obstruction in cases such as anaphylaxis, the obtunded patient, or medical sedation. Airway obstruction can be caused by the tongue, foreign objects, the tissues of the airway itself, and bodily fluids such as blood and gastric contents (aspiration).

<span class="mw-page-title-main">Respiratory arrest</span> Medical condition

Respiratory arrest is a serious medical condition caused by apnea or respiratory dysfunction severe enough that it will not sustain the body. Prolonged apnea refers to a patient who has stopped breathing for a long period of time. If the heart muscle contraction is intact, the condition is known as respiratory arrest. An abrupt stop of pulmonary gas exchange lasting for more than five minutes may permanently damage vital organs, especially the brain. Lack of oxygen to the brain causes loss of consciousness. Brain injury is likely if respiratory arrest goes untreated for more than three minutes, and death is almost certain if more than five minutes.

Sir Ivan Whiteside Magill KCVO was an Irish-born anaesthetist who is famous for his involvement in much of the innovation and development in modern anaesthesia. He helped to establish the Association of Anaesthetists of Great Britain and Ireland. Several medical devices are named after him.

Stridor is an extra-thoracic high-pitched breath sound resulting from turbulent air flow in the larynx or lower in the bronchial tree. It is different from a stertor, which is a noise originating in the pharynx.

<span class="mw-page-title-main">Cricothyrotomy</span> Incision of the skin and cricothyroid membrane to establish a clear airway

A cricothyrotomy is an incision made through the skin and cricothyroid membrane to establish a patent airway during certain life-threatening situations, such as airway obstruction by a foreign body, angioedema, or massive facial trauma. Cricothyrotomy is nearly always performed as a last resort in cases where other means of tracheal intubation are impossible or impractical. Compared with tracheotomy, cricothyrotomy is quicker and easier to perform, does not require manipulation of the cervical spine, and is associated with fewer complications. However, while cricothyrotomy may be life-saving in extreme circumstances, this technique is only intended to be a temporizing measure until a definitive airway can be established.

<span class="mw-page-title-main">Combitube</span> Device used to provide an airway

The Combitube—also known as the esophageal tracheal airway or esophageal tracheal double-lumen airway—is a blind insertion airway device (BIAD) used in the pre-hospital and emergency setting. It is designed to provide an airway to facilitate the mechanical ventilation of a patient in respiratory distress.

<span class="mw-page-title-main">Subglottic stenosis</span> Medical condition

Subglottic stenosis is a congenital or acquired narrowing of the subglottic airway. It can be congenital, acquired, iatrogenic, or very rarely, idiopathic. It is defined as the narrowing of the portion of the airway that lies between the vocal cords and the lower part of the cricoid cartilage. In a normal infant, the subglottic airway is 4.5-5.5 millimeters wide, while in a premature infant, the normal width is 3.5 millimeters. Subglottic stenosis is defined as a diameter of under 4 millimeters in an infant. Acquired cases are more common than congenital cases due to prolonged intubation being introduced in the 1960s. It is most frequently caused by certain medical procedures or external trauma, although infections and systemic diseases can also cause it.

<span class="mw-page-title-main">Bronchoscopy</span> Procedure allowing a physician to look at a patients airways

Bronchoscopy is an endoscopic technique of visualizing the inside of the airways for diagnostic and therapeutic purposes. An instrument (bronchoscope) is inserted into the airways, usually through the nose or mouth, or occasionally through a tracheostomy. This allows the practitioner to examine the patient's airways for abnormalities such as foreign bodies, bleeding, tumors, or inflammation. Specimens may be taken from inside the lungs. The construction of bronchoscopes ranges from rigid metal tubes with attached lighting devices to flexible optical fiber instruments with realtime video equipment.

<span class="mw-page-title-main">Tracheobronchial injury</span> Damage to the tracheobronchial tree

Tracheobronchial injury is damage to the tracheobronchial tree. It can result from blunt or penetrating trauma to the neck or chest, inhalation of harmful fumes or smoke, or aspiration of liquids or objects.

A tracheotome is a medical instrument used to perform an incision in the trachea with a cutting blade operated by a powered cannula. It is often called a tracheostomy tube because once it enters the stoma in the trachea, a breathing tube is connected to a ventilator and oxygen is provided to the lungs.

Tracheal intubation, an invasive medical procedure, is the placement of a flexible plastic catheter into the trachea. For millennia, tracheotomy was considered the most reliable method of tracheal intubation. By the late 19th century, advances in the sciences of anatomy and physiology, as well as the beginnings of an appreciation of the germ theory of disease, had reduced the morbidity and mortality of this operation to a more acceptable rate. Also in the late 19th century, advances in endoscopic instrumentation had improved to such a degree that direct laryngoscopy had finally become a viable means to secure the airway by the non-surgical orotracheal route. Nasotracheal intubation was not widely practiced until the early 20th century. The 20th century saw the transformation of the practices of tracheotomy, endoscopy and non-surgical tracheal intubation from rarely employed procedures to essential components of the practices of anesthesia, critical care medicine, emergency medicine, gastroenterology, pulmonology and surgery.

<span class="mw-page-title-main">Tracheobronchomalacia</span> Medical condition

Tracheobronchomalacia (TBM) is a condition characterized by flaccidity of the tracheal support cartilage which leads to tracheal collapse. This condition can also affect the bronchi. There are two forms of this condition: primary TBM and secondary TBM. Primary TBM is congenital and starts as early as birth. It is mainly linked to genetic causes. Secondary TBM is acquired and starts in adulthood. It is mainly developed after an accident or chronic inflammation.

<span class="mw-page-title-main">Double-lumen endobronchial tube</span>

A double-lumen endotracheal tube is a type of endotracheal tube which is used in tracheal intubation during thoracic surgery and other medical conditions to achieve selective, one-sided ventilation of either the right or the left lung.

An bronchial blocker is a device which can be inserted down a tracheal tube after tracheal intubation so as to block off the right or left main bronchus of the lungs in order to be able to achieve a controlled one sided ventilation of the lungs in thoracic surgery. The lung tissue distal to the obstruction will collapse, thus allowing the surgeon's view and access to relevant structures within the thoracic cavity.

<span class="mw-page-title-main">Advanced airway management</span>

Advanced airway management is the subset of airway management that involves advanced training, skill, and invasiveness. It encompasses various techniques performed to create an open or patent airway – a clear path between a patient's lungs and the outside world.

<span class="mw-page-title-main">Tracheoinnominate fistula</span> Medical condition

Tracheoinnominate fistula is an abnormal connection (fistula) between the innominate artery and the trachea. A TIF is a rare but life-threatening iatrogenic injury, usually the sequela of a tracheotomy.

References

  1. Dunn, Peter F.; Goulet, Robert L. (2000). "Endotracheal Tubes and Airway Appliances". International Anesthesiology Clinics. 38 (3): 65–94. doi:10.1097/00004311-200007000-00006. ISSN   0020-5907. S2CID   27411412.
  2. Hood, R. Maurice; Rush, Clyde E. (March 1962). "LETHAL HAZARDS OF THE MöRCH RESPIRATOR". The Journal of Thoracic and Cardiovascular Surgery. 43 (3): 338–342. doi: 10.1016/s0022-5223(20)31610-x . ISSN   0022-5223. PMID   13908743.
  3. Edling, Christer (2020-10-28), "Anesthetic Gases", Occupational Hazards in the Health Professions, CRC Press, pp. 121–130, doi:10.1201/9781003068617-6, ISBN   9781003068617, S2CID   243089311 , retrieved 2023-05-24
  4. 1 2 3 4 5 6 "Equipment Sizing Chart". University of Iowa Children's Hospital . Retrieved 2015-11-07.
  5. 1 2 Varshney, Manu; Kumar, Rakesh; Sharma, Kavita; Varshney, PreetiG (2011). "Appropriate depth of placement of oral endotracheal tube and its possible determinants in Indian adult patients". Indian Journal of Anaesthesia. 55 (5): 488–93. doi: 10.4103/0019-5049.89880 . ISSN   0019-5049. PMC   3237149 . PMID   22174466.
  6. Carlens E (October 1949). "A new flexible double-lumen catheter for bronchospirometry". J Thorac Surg. 18 (5): 742–746. doi:10.1016/S0096-5588(20)31326-X. PMID   18149050.
  7. Specification for Tracheostomy Tubes-Pediatric Tracheostomy Tubes, ASTM International, doi:10.1520/f1627 , retrieved 2023-05-24

Further reading