C55-isoprenyl pyrophosphate

Last updated
C55-isoprenyl pyrophosphate
Undecaprenyl pyrophosphate.svg
n = 8
Names
Preferred IUPAC name
(2Z,6Z,10Z,14Z,18Z,22Z,26Z,30Z,34E,38E)-3,7,11,15,19,23,27,31,35,39,43-undecamethyltetratetraconta-2,6,10,14,18,22,26,30,34,38,42-undecaen-1-yl trihydrogen diphosphate
Other names
C55-undecaprenyl pyrophosphate; di-trans,poly-cis-undecaprenyl diphosphate; Undecaprenyl pyrophosphate; Pyrophosphoryl undecaprenol; Undecaisoprenyl pyrophosphate; Undecaprenyl diphosphate; Diphosphoundecaprenol; Bactoprenyl diphosphate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
  • InChI=1S/C55H92O7P2/c1-45(2)23-13-24-46(3)25-14-26-47(4)27-15-28-48(5)29-16-30-49(6)31-17-32-50(7)33-18-34-51(8)35-19-36-52(9)37-20-38-53(10)39-21-40-54(11)41-22-42-55(12)43-44-61-64(59,60)62-63(56,57)58/h23,25,27,29,31,33,35,37,39,41,43H,13-22,24,26,28,30,32,34,36,38,40,42,44H2,1-12H3,(H,59,60)(H2,56,57,58)/b46-25+,47-27+,48-29-,49-31-,50-33-,51-35-,52-37-,53-39-,54-41-,55-43-
    Key: NTXGVHCCXVHYCL-NTDVEAECSA-N
  • CC(=CCC/C(=C/CC/C(=C/CC/C(=C\CC/C(=C\CC/C(=C\CC/C(=C\CC/C(=C\CC/C(=C\CC/C(=C\CC/C(=C\COP(=O)(O)OP(=O)(O)O)/C)/C)/C)/C)/C)/C)/C)/C)/C)/C)C
Properties
C55H92O7P2
Molar mass 927.282 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

C55-isoprenyl pyrophosphate (undecaprenyl pyrophosphate; C55-PP) is an essential molecule involved in construction of the bacterial peptidoglycan cell wall. [1] It is a receptor found in the plasma membrane of bacteria that allows glycan tetrapeptide monomers synthesized in the cell cytoplasm to translocate to the periplasmic space. [2]

A related compound is C55-P (undecaprenyl phosphate), differing by having one fewer phosphate group. It is produced from C55-PP by reaction EC 3.6.1.27, typically catalyzed by UppP/BacA. C55-P is recycled back into C55-PP later in the process. C55-OH is known as bactoprenol. [2]

Related Research Articles

Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like peptidoglycan layer outside the plasma membrane, the rigid cell wall characteristic of most bacteria. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). Attached to the N-acetylmuramic acid is a oligopeptide chain made of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer. Peptidoglycan serves a structural role in the bacterial cell wall, giving structural strength, as well as counteracting the osmotic pressure of the cytoplasm. This repetitive linking results in a dense peptidoglycan layer which is critical for maintaining cell form and withstanding high osmotic pressures, and it is regularly replaced by peptidoglycan production. Peptidoglycan hydrolysis and synthesis are two processes that must occur in order for cells to grow and multiply, a technique carried out in three stages: clipping of current material, insertion of new material, and re-crosslinking of existing material to new material.

<span class="mw-page-title-main">Pyrophosphate</span> Chemical compound

In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a P–O–P linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate (Na2H2P2O7) and tetrasodium pyrophosphate (Na4P2O7), among others. Often pyrophosphates are called diphosphates. The parent pyrophosphates are derived from partial or complete neutralization of pyrophosphoric acid. The pyrophosphate bond is also sometimes referred to as a phosphoanhydride bond, a naming convention which emphasizes the loss of water that occurs when two phosphates form a new P–O–P bond, and which mirrors the nomenclature for anhydrides of carboxylic acids. Pyrophosphates are found in ATP and other nucleotide triphosphates, which are important in biochemistry. The term pyrophosphate is also the name of esters formed by the condensation of a phosphorylated biological compound with inorganic phosphate, as for dimethylallyl pyrophosphate. This bond is also referred to as a high-energy phosphate bond.

<span class="mw-page-title-main">Teichoic acid</span>

Teichoic acids are bacterial copolymers of glycerol phosphate or ribitol phosphate and carbohydrates linked via phosphodiester bonds.

<span class="mw-page-title-main">Bacitracin</span> Polypeptide Antibiotic (Gram Positive Bacteriacide)

Bacitracin is a polypeptide antibiotic. It is a mixture of related cyclic peptides produced by Bacillus licheniformis bacteria, that was first isolated from the variety "Tracy I" in 1945. These peptides disrupt Gram-positive bacteria by interfering with cell wall and peptidoglycan synthesis.

An S-layer is a part of the cell envelope found in almost all archaea, as well as in many types of bacteria. The S-layers of both archaea and bacteria consists of a monomolecular layer composed of only one identical proteins or glycoproteins. This structure is built via self-assembly and encloses the whole cell surface. Thus, the S-layer protein can represent up to 15% of the whole protein content of a cell. S-layer proteins are poorly conserved or not conserved at all, and can differ markedly even between related species. Depending on species, the S-layers have a thickness between 5 and 25 nm and possess identical pores with 2–8 nm in diameter.

<span class="mw-page-title-main">Prenylation</span> Addition of hydrophobic moieties to proteins or other biomolecules

Prenylation is the addition of hydrophobic molecules to a protein or a biomolecule. It is usually assumed that prenyl groups (3-methylbut-2-en-1-yl) facilitate attachment to cell membranes, similar to lipid anchors like the GPI anchor, though direct evidence of this has not been observed. Prenyl groups have been shown to be important for protein–protein binding through specialized prenyl-binding domains.

The bacterium, despite its simplicity, contains a well-developed cell structure which is responsible for some of its unique biological structures and pathogenicity. Many structural features are unique to bacteria and are not found among archaea or eukaryotes. Because of the simplicity of bacteria relative to larger organisms and the ease with which they can be manipulated experimentally, the cell structure of bacteria has been well studied, revealing many biochemical principles that have been subsequently applied to other organisms.

<span class="mw-page-title-main">Inorganic pyrophosphatase</span> Group of proteins having inorganic pyrophosphatase activity

Inorganic pyrophosphatase is an enzyme that catalyzes the conversion of one ion of pyrophosphate to two phosphate ions. This is a highly exergonic reaction, and therefore can be coupled to unfavorable biochemical transformations in order to drive these transformations to completion. The functionality of this enzyme plays a critical role in lipid metabolism, calcium absorption and bone formation, and DNA synthesis, as well as other biochemical transformations.

<span class="mw-page-title-main">Prokaryotic DNA replication</span> DNA Replication in prokaryotes

Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. Although it is often studied in the model organism E. coli, other bacteria show many similarities. Replication is bi-directional and originates at a single origin of replication (OriC). It consists of three steps: Initiation, elongation, and termination.

In enzymology, an undecaprenyl-diphosphatase (EC 3.6.1.27) is an enzyme that catalyzes the chemical reaction

In enzymology, an undecaprenol kinase is an enzyme that catalyzes the chemical reaction

In enzymology, an undecaprenyl-phosphate galactose phosphotransferase is an enzyme that catalyzes the chemical reaction

Obcells are hypothetical proto-organisms or the earliest form of life. The term was first proposed by Thomas Cavalier-Smith in 2001. According to Cavalier-Smith's theory for the origin of the first cell, two cup-shaped obcells or hemicells fused to make a protocell with double-lipid layer envelope, internal genome and ribosomes, protocytosol, and periplasm.

<span class="mw-page-title-main">Bactoprenol</span> Chemical compound

Bactoprenol also known as dolichol-11 and C55-isoprenyl alcohol (C55-OH) is a lipid first identified in certain species of lactobacili. It is a hydrophobic alcohol that plays a key role in the growth of cell walls (peptidoglycan) in Gram-positive bacteria.

UDP-N-acetylglucosamine—undecaprenyl-phosphate N-acetylglucosaminephosphotransferase is an enzyme with systematic name UDP-N-acetyl-alpha-D-glucosamine:ditrans,octacis-undecaprenyl phosphate N-acetyl-alpha-D-glucosaminephosphotransferase. This enzyme catalyses the following chemical reaction

Phosphoglycosyl transferase C (PglC) is an enzyme belonging to a class known as monotopic phosphoglycosyl transferases (PGT). PGTs are required for the synthesis of glycoconjugates on the membrane surface of bacteria. Glycoconjugates, such as glycoproteins, are imperative for bacterial communication as well as host cell interactions between prokaryotic and eukaryotic cells lending to bacteria's pathogenicity.

<span class="mw-page-title-main">Lipid II</span> Chemical compound

Lipid II is a precursor molecule in the synthesis of the cell wall of bacteria. It is a peptidoglycan, which is amphipathic and named for its bactoprenol hydrocarbon chain, which acts as a lipid anchor, embedding itself in the bacterial cell membrane. Lipid II must translocate across the cell membrane to deliver and incorporate its disaccharide-pentapeptide "building block" into the peptidoglycan mesh. Lipid II is the target of several antibiotics.

<span class="mw-page-title-main">Cyclic di-AMP</span> Chemical compound

Cyclic di-AMP is a second messenger used in signal transduction in bacteria and archaea. It is present in many Gram-positive bacteria, some Gram-negative species, and archaea of the phylum euryarchaeota.

Members of the H+, Na+-translocating Pyrophosphatase (M+-PPase) Family (TC# 3.A.10) are found in the vacuolar (tonoplast) membranes of higher plants, algae, and protozoa, and in both bacteria and archaea. They are therefore ancient enzymes.

Undecaprenyl phosphate (UP), also known lipid-P, bactoprenol and C55-P., is a molecule with the primary function of trafficking polysaccharides across the cell membrane, largely contributing to the overall structure of the cell wall in Gram-positive bacteria. In some situations, UP can also be utilized to carry other cell-wall polysaccharides, but UP is the designated lipid carrier for peptidoglycan. During the process of carrying the peptidoglycan across the cell membrane, N-acetylglucosamine and N-acetylmuramic acid are linked to UP on the cytoplasmic side of the membrane before being carried across. UP works in a cycle of phosphorylation and dephosphorylation as the lipid carrier gets used, recycled, and reacts with undecaprenyl phosphate. This type of synthesis is referred to as de novo synthesis where a complex molecule is created from simpler molecules as opposed to a complete recycle of the entire structure.

References

  1. Stone, K. John; Strominger, Jack L. (December 1971). "Mechanism of Action of Bacitracin: Complexation with Metal Ion and C55-Isoprenyl Pyrophosphate". PNAS. 68 (12): 3223–3227. Bibcode:1971PNAS...68.3223S. doi: 10.1073/pnas.68.12.3223 . PMC   389626 . PMID   4332017.
  2. 1 2 Manat, Guillaume; Roure, Sophie; Auger, Rodolphe; Bouhss, Ahmed; Barreteau, Hélène; Mengin-Lecreulx, Dominique; Touzé, Thierry (June 2014). "Deciphering the Metabolism of Undecaprenyl-Phosphate: The Bacterial Cell-Wall Unit Carrier at the Membrane Frontier". Microbial Drug Resistance. 20 (3): 199–214. doi:10.1089/mdr.2014.0035.