CASTEP

Last updated
CASTEP
Developer(s) CASTEP developers group
Stable release
24.1 / 5 April 2024;45 days ago (2024-04-05)
Repository
Written in Fortran 2003 with OpenMP and MPI
Operating system Linux, MacOS, Windows
Type Density Functional Theory (simulation)
License Academic (worldwide) / Commercial
Website www.castep.org

CASTEP is a shared-source academic and commercial software package which uses density functional theory with a plane wave basis set to calculate the electronic properties of crystalline solids, surfaces, molecules, liquids and amorphous materials from first principles. CASTEP permits geometry optimisation and finite temperature molecular dynamics with implicit symmetry and geometry constraints, as well as calculation of a wide variety of derived properties of the electronic configuration. Although CASTEP was originally a serial, Fortran 77-based program, it was completely redesigned and rewritten from 1999 to 2001 using Fortran 95 and MPI for use on parallel computers by researchers at the Universities of York, Durham, St. Andrews, Cambridge and Rutherford Labs.

Contents

History

CASTEP was created in the late 1980s and early 1990s in the TCM Group of the Cavendish Laboratory in Cambridge. [1] It was then an academic code written in Fortran77, and the name was originally derived from CAmbridge Serial Total Energy Package. In the mid-1990s it was commercialised by licensing it to Molecular Simulations International (the company was later purchased by Accelrys, in turn purchased by Biovia) in an arrangement through which the University of Cambridge received a share of the royalties, and much of the development remained with the original academic authors. The code was then redesigned and completely rewritten from 1999–2001 to make use of the features of modern Fortran, enable parallelism throughout the code and improve its software sustainability. The name CASTEP was adopted by the new codebase, but without the implied former meaning since the code was now parallel, and capable of computing many quantities besides the total energy. By this point annual sales exceeded £1m. [2] Despite its commercialisation, CASTEP and its source code remained free to UK academics.

In 2019 the free academic licence was extended to world-wide academic use (not just UK academia). [3] Commercial users can purchase CASTEP as part of Biovia's Materials Studio package. [4]

Theory and approximations

Starting from the many-body wave function, an adiabatic approximation is made with respect to the nuclear and electronic coordinates (the Born–Oppenheimer approximation). The code also makes use of Bloch's Theorem which means a wavefunction of a periodic system has a cell-periodic factor and a phase factor. The phase factor is represented by a plane wave. From the usage of Bloch's Theorem, it is ideal to write the wavefunction in plane waves for the cell-periodic factor and the phase factor. From this the basis functions are orthogonal and it is easy to perform a Fourier transform from real to reciprocal space and vice versa. Fast Fourier transforms are used throughout the CASTEP code, as is the Ewald summation method for Coulombic energies. Along with plane waves and iterative diagonalization methods (via conjugate gradient or blocked Davidson algorithms), pseudopotentials are essential to the CASTEP code for reducing the computational expense of the calculation. Pseudopotentials replace the atomic nucleus and the core electrons by an effective numeric potential.

Geometry optimisation

CASTEP is capable of optimising the atomic geometry of a system in several different ways. The default is BFGS, whereby an approximation to the Hessian matrix is built up over successive electronic minimisation steps and used to find a search direction at each. Damped molecular dynamics is also possible and often quick to converge, sometimes even faster than BFGS, due to wavefunction extrapolation. Damped MD is most often chosen over BFGS, however, due to the possibility for non-linear ion constraints. A further alternative is the FIRE scheme, which takes approximately the same approach as damped MD, but based on slightly different methodology.

See also

Related Research Articles

In solid-state physics, the electronic band structure of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have.

The Vienna Ab initio Simulation Package, better known as VASP, is a package written primarily in Fortran for performing ab initio quantum mechanical calculations using either Vanderbilt pseudopotentials, or the projector augmented wave method, and a plane wave basis set. The basic methodology is density functional theory (DFT), but the code also allows use of post-DFT corrections such as hybrid functionals mixing DFT and Hartree–Fock exchange, many-body perturbation theory and dynamical electronic correlations within the random phase approximation (RPA) and MP2.

<span class="mw-page-title-main">Pseudopotential</span>

In physics, a pseudopotential or effective potential is used as an approximation for the simplified description of complex systems. Applications include atomic physics and neutron scattering. The pseudopotential approximation was first introduced by Hans Hellmann in 1934.

In theoretical and computational chemistry, a basis set is a set of functions that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.

Amsterdam Density Functional (ADF) is a program for first-principles electronic structure calculations that makes use of density functional theory (DFT). ADF was first developed in the early seventies by the group of E. J. Baerends from the Vrije Universiteit in Amsterdam, and by the group of T. Ziegler from the University of Calgary. Nowadays many other academic groups are contributing to the software. Software for Chemistry & Materials (SCM), formerly known as Scientific Computing & Modelling is a spin-off company from the Baerends group. SCM has been coordinating the development and distribution of ADF since 1995. Together with the rise in popularity of DFT in the nineties, ADF has become a popular computational chemistry software package used in the industrial and academic research. ADF excels in spectroscopy, transition metals, and heavy elements problems. A periodic structure counterpart of ADF named BAND is available to study bulk crystals, polymers, and surfaces. The Amsterdam Modeling Suite has expanded beyond DFT since 2010, with the semi-empirical MOPAC code, the Quantum ESPRESSO plane wave code, a density-functional based tight binding (DFTB) module, a reactive force field module ReaxFF, and an implementation of Klamt's COSMO-RS method, which also includes COSMO-SAC, UNIFAC, and QSPR.

ABINIT is an open-source suite of programs for materials science, distributed under the GNU General Public License. ABINIT implements density functional theory, using a plane wave basis set and pseudopotentials, to compute the electronic density and derived properties of materials ranging from molecules to surfaces to solids. It is developed collaboratively by researchers throughout the world. A web-based easy-to-use graphical version, which includes access to a limited set of ABINIT's full functionality, is available for free use through the nanohub.

<span class="mw-page-title-main">SIESTA (computer program)</span>

SIESTA is an original method and its computer program implementation, to efficiently perform electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids. SIESTA uses strictly localized basis sets and the implementation of linear-scaling algorithms. Accuracy and speed can be set in a wide range, from quick exploratory calculations to highly accurate simulations matching the quality of other approaches, such as the plane-wave and all-electron methods.

<span class="mw-page-title-main">PQS (software)</span> Quantum chemistry software program

PQS is a general purpose quantum chemistry program. Its roots go back to the first ab initio gradient program developed in Professor Peter Pulay's group but now it is developed and distributed commercially by Parallel Quantum Solutions. There is a reduction in cost for academic users and a site license. Its strong points are geometry optimization, NMR chemical shift calculations, and large MP2 calculations, and high parallel efficiency on computing clusters. It includes many other capabilities including Density functional theory, the semiempirical methods, MINDO/3, MNDO, AM1 and PM3, Molecular mechanics using the SYBYL 5.0 Force Field, the quantum mechanics/molecular mechanics mixed method using the ONIOM method, natural bond orbital (NBO) analysis and COSMO solvation models. Recently, a highly efficient parallel CCSD(T) code for closed shell systems has been developed. This code includes many other post Hartree–Fock methods: MP2, MP3, MP4, CISD, CEPA, QCISD and so on.

In solid-state physics, the nearly free electron model is a quantum mechanical model of physical properties of electrons that can move almost freely through the crystal lattice of a solid. The model is closely related to the more conceptual empty lattice approximation. The model enables understanding and calculation of the electronic band structures, especially of metals.

PWPAW A Projector Augmented Wave (PAW) code for electronic structure calculation. It is a free software package, distributed under the copyleft GNU General Public License. It is a plane wave implementation of the projector augmented wave (PAW) method developed by Peter E. Blöchl for electronic structure calculations within the framework of density functional theory. In addition to the self-consistent calculation of the electronic structure of a periodic solid, the program has a number of other capabilities, including structural geometry optimization and molecular dynamics simulations within the Born–Oppenheimer approximation.

Octopus is a software package for performing Kohn‍–‍Sham density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations.

Car–Parrinello molecular dynamics or CPMD refers to either a method used in molecular dynamics or the computational chemistry software package used to implement this method.

The muffin-tin approximation is a shape approximation of the potential well in a crystal lattice. It is most commonly employed in quantum mechanical simulations of the electronic band structure in solids. The approximation was proposed by John C. Slater. Augmented plane wave method (APW) is a method which uses muffin-tin approximation. It is a method to approximate the energy states of an electron in a crystal lattice. The basic approximation lies in the potential in which the potential is assumed to be spherically symmetric in the muffin-tin region and constant in the interstitial region. Wave functions are constructed by matching solutions of the Schrödinger equation within each sphere with plane-wave solutions in the interstitial region, and linear combinations of these wave functions are then determined by the variational method. Many modern electronic structure methods employ the approximation. Among them APW method, the linear muffin-tin orbital method (LMTO) and various Green's function methods. One application is found in the variational theory developed by Jan Korringa (1947) and by Walter Kohn and N. Rostoker (1954) referred to as the KKR method. This method has been adapted to treat random materials as well, where it is called the KKR coherent potential approximation.

<span class="mw-page-title-main">CP2K</span>

CP2K is a freely available (GPL) quantum chemistry and solid state physics program package, written in Fortran 2008, to perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems. It provides a general framework for different methods: density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW) via LDA, GGA, MP2, or RPA levels of theory, classical pair and many-body potentials, semi-empirical and tight-binding Hamiltonians, as well as Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid schemes relying on the Gaussian Expansion of the Electrostatic Potential (GEEP). The Gaussian and Augmented Plane Waves method (GAPW) as an extension of the GPW method allows for all-electron calculations. CP2K can do simulations of molecular dynamics, metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational analysis, core level spectroscopy, energy minimization, and transition state optimization using NEB or dimer method.

<span class="mw-page-title-main">Multislice</span>

The multislice algorithm is a method for the simulation of the elastic scattering of an electron beam with matter, including all multiple scattering effects. The method is reviewed in the book by John M. Cowley, and also the work by Ishizuka. The algorithm is used in the simulation of high resolution transmission electron microscopy (HREM) micrographs, and serves as a useful tool for analyzing experimental images. This article describes some relevant background information, the theoretical basis of the technique, approximations used, and several software packages that implement this technique. Some of the advantages and limitations of the technique and important considerations that need to be taken into account are described.

<span class="mw-page-title-main">Contrast transfer function</span>

The contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample. This contrast transfer function (CTF) sets the resolution of high-resolution transmission electron microscopy (HRTEM), also known as phase contrast TEM.

Yambo is a computer software package for studying many-body theory aspects of solids and molecule systems. It calculates the excited state properties of physical systems from first principles, e.g., from quantum mechanics law without the use of empirical data. It is an open-source software released under the GNU General Public License (GPL). However the main development repository is private and only a subset of the features available in the private repository are cloned into the public repository and thus distributed.

<span class="mw-page-title-main">Quantum ESPRESSO</span>

Quantum ESPRESSO is a suite for first-principles electronic-structure calculations and materials modeling, distributed for free and as free software under the GNU General Public License. It is based on density-functional theory, plane wave basis sets, and pseudopotentials. ESPRESSO is an acronym for opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization.

BigDFT is a free software package for physicists and chemists, distributed under the GNU General Public License, whose main program allows the total energy, charge density, and electronic structure of systems made of electrons and nuclei to be calculated within density functional theory (DFT), using pseudopotentials, and a wavelet basis.

The projector augmented wave method (PAW) is a technique used in ab initio electronic structure calculations. It is a generalization of the pseudopotential and linear augmented-plane-wave methods, and allows for density functional theory calculations to be performed with greater computational efficiency.

References

  1. TCM's web site, history section
  2. Evolution of CASTEP "Cambridge Enterprise Annual Review 2009" retrieved 8 August 2016
  3. "Academic licence" retrieved 9 October 2021
  4. "Getting CASTEP" retrieved 21 May 2024