CDK2AP1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | CDK2AP1 , DOC1, DORC1, ST19, doc-1, p12DOC-1, cyclin-dependent kinase 2 associated protein 1, cyclin dependent kinase 2 associated protein 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 602198; MGI: 1202069; HomoloGene: 3411; GeneCards: CDK2AP1; OMA:CDK2AP1 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Cyclin-dependent kinase 2-associated protein 1 is an enzyme that in humans is encoded by the CDK2AP1 gene. [5] [6] [7]
The protein encoded by this gene is a specific CDK2-associated protein, which is thought to negatively regulate CDK2 activity by sequestering monomeric CDK2, and targeting CDK2 for proteolysis. This protein was found to also interact with DNA polymerase alpha/primase and mediate the phosphorylation of the large p180 subunit, which suggested the regulatory role in DNA replication during S phase of the cell cycle. A similar gene in hamster was isolated from, and functions as a growth suppressor of normal keratinocytes. [7]
CDK2AP1 has been shown to interact with Cyclin-dependent kinase 2. [8]
It interacts with unnamed protein product (BC006130) which may mediate inhibitory effect of CDK2AP1 on cell proliferation. [9]
Cyclin A is a member of the cyclin family, a group of proteins that function in regulating progression through the cell cycle. The stages that a cell passes through that culminate in its division and replication are collectively known as the cell cycle Since the successful division and replication of a cell is essential for its survival, the cell cycle is tightly regulated by several components to ensure the efficient and error-free progression through the cell cycle. One such regulatory component is cyclin A which plays a role in the regulation of two different cell cycle stages.
Cyclin E is a member of the cyclin family.
Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the CDK2 gene. The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein kinases. This protein kinase is highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, also known as Cdk1 in humans. It is a catalytic subunit of the cyclin-dependent kinase complex, whose activity is restricted to the G1-S phase of the cell cycle, where cells make proteins necessary for mitosis and replicate their DNA. This protein associates with and is regulated by the regulatory subunits of the complex including cyclin E or A. Cyclin E binds G1 phase Cdk2, which is required for the transition from G1 to S phase while binding with Cyclin A is required to progress through the S phase. Its activity is also regulated by phosphorylation. Multiple alternatively spliced variants and multiple transcription initiation sites of this gene have been reported. The role of this protein in G1-S transition has been recently questioned as cells lacking Cdk2 are reported to have no problem during this transition.
Cyclin-dependent kinase inhibitor 1B (p27Kip1) is an enzyme inhibitor that in humans is encoded by the CDKN1B gene. It encodes a protein which belongs to the Cip/Kip family of cyclin dependent kinase (Cdk) inhibitor proteins. The encoded protein binds to and prevents the activation of cyclin E-CDK2 or cyclin D-CDK4 complexes, and thus controls the cell cycle progression at G1. It is often referred to as a cell cycle inhibitor protein because its major function is to stop or slow down the cell division cycle.
Transcription factor E2F1 is a protein that in humans is encoded by the E2F1 gene.
G1/S-specific cyclin-D2 is a protein that in humans is encoded by the CCND2 gene.
Myb-related protein B is a protein that in humans is encoded by the MYBL2 gene.
G1/S-specific cyclin-E1 is a protein that in humans is encoded by the CCNE1 gene.
Transcription factor E2F3 is a protein that in humans is encoded by the E2F3 gene.
Transcription factor E2F2 is a protein that in humans is encoded by the E2F2 gene.
Cyclin-A2 is a protein that in humans is encoded by the CCNA2 gene. It is one of the two types of cyclin A: cyclin A1 is expressed during meiosis and embryogenesis while cyclin A2 is expressed in the mitotic division of somatic cells.
Cyclin-dependent kinase 4 inhibitor B also known as multiple tumor suppressor 2 (MTS-2) or p15INK4b is a protein that is encoded by the CDKN2B gene in humans.
Cyclin-dependent kinases regulatory subunit 1 is a protein that in humans is encoded by the CKS1B gene.
Cell division protein kinase 3 is an enzyme that in humans is encoded by the CDK3 gene.
Cyclin-dependent kinase inhibitor 3 is an enzyme that in humans is encoded by the CDKN3 gene.
Protein phosphatase 1B is an enzyme that in humans is encoded by the PPM1B gene.
G protein pathway suppressor 2 is a protein that in humans is encoded by the GPS2 gene.
Dual specificity protein phosphatase CDC14A is an enzyme that in humans is encoded by the CDC14A gene.
Histone H4 transcription factor is a protein that in humans is encoded by the HINFP gene.
The CIP/KIP family is one of two families of mammalian cyclin dependent kinase (CDK) inhibitors (CKIs) involved in regulating the cell cycle. The CIP/KIP family is made up of three proteins: p21cip1/waf1, P27kip1, p57kip2 These proteins share sequence homology at the N-terminal domain which allows them to bind to both the cyclin and CDK. Their activity primarily involves the binding and inhibition of G1/S- and S-Cdks; however, they have also been shown to play an important role in activating the G1-CDKs CDK4 and CDK6. In addition, more recent work has shown that CIP/KIP family members have a number of CDK-independent roles involving regulation of transcription, apoptosis, and the cytoskeleton.