CN-group

Last updated

In mathematics, in the area of algebra known as group theory, a more than fifty-year effort was made to answer a conjecture of ( Burnside 1911 ): are all groups of odd order solvable? Progress was made by showing that CA-groups, groups in which the centralizer of a non-identity element is abelian, of odd order are solvable ( Suzuki 1957 ). Further progress was made showing that CN-groups, groups in which the centralizer of a non-identity element is nilpotent, of odd order are solvable ( Feit, Thompson & Hall 1960 ). The complete solution was given in ( Feit & Thompson 1963 ), but further work on CN-groups was done in ( Suzuki 1961 ), giving more detailed information about the structure of these groups. For instance, a non-solvable CN-group G is such that its largest solvable normal subgroup O(G) is a 2-group, and the quotient is a group of even order.

Examples

Solvable CN groups include

Non-solvable CN groups include:

Related Research Articles

<span class="mw-page-title-main">Finite group</span> Mathematical group based upon a finite number of elements

In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups.

<span class="mw-page-title-main">John G. Thompson</span> American mathematician

John Griggs Thompson is an American mathematician at the University of Florida noted for his work in the field of finite groups. He was awarded the Fields Medal in 1970, the Wolf Prize in 1992, and the Abel Prize in 2008.

In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.

<span class="mw-page-title-main">Frobenius group</span>

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

In mathematics, a Ree group is a group of Lie type over a finite field constructed by Ree from an exceptional automorphism of a Dynkin diagram that reverses the direction of the multiple bonds, generalizing the Suzuki groups found by Suzuki using a different method. They were the last of the infinite families of finite simple groups to be discovered.

In mathematics, in the realm of group theory, a group is said to be a CA-group or centralizer abelian group if the centralizer of any nonidentity element is an abelian subgroup. Finite CA-groups are of historical importance as an early example of the type of classifications that would be used in the Feit–Thompson theorem and the classification of finite simple groups. Several important infinite groups are CA-groups, such as free groups, Tarski monsters, and some Burnside groups, and the locally finite CA-groups have been classified explicitly. CA-groups are also called commutative-transitive groups because commutativity is a transitive relation amongst the non-identity elements of a group if and only if the group is a CA-group.

In mathematics, the Feit–Thompson conjecture is a conjecture in number theory, suggested by Walter Feit and John G. Thompson (1962). The conjecture states that there are no distinct prime numbers p and q such that

In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups:

In mathematical group theory, a normal p-complement of a finite group for a prime p is a normal subgroup of order coprime to p and index a power of p. In other words the group is a semidirect product of the normal p-complement and any Sylow p-subgroup. A group is called p-nilpotent if it has a normal p-complement.

In mathematical finite group theory, an N-group is a group all of whose local subgroups are solvable groups. The non-solvable ones were classified by Thompson during his work on finding all the minimal finite simple groups.

In finite group theory, an area of abstract algebra, a strongly embedded subgroup of a finite group G is a proper subgroup H of even order such that H ∩ Hg has odd order whenever g is not in H. The Bender–Suzuki theorem, proved by Bender (1971) extending work of Suzuki (1962, 1964), classifies the groups G with a strongly embedded subgroup H. It states that either

  1. G has cyclic or generalized quaternion Sylow 2-subgroups and H contains the centralizer of an involution
  2. or G/O(G) has a normal subgroup of odd index isomorphic to one of the simple groups PSL2(q), Sz(q) or PSU3(q) where q≥4 is a power of 2 and H is O(G)NG(S) for some Sylow 2-subgroup S.

In mathematical group theory, a C-group is a group such that the centralizer of any involution has a normal Sylow 2-subgroup. They include as special cases CIT-groups where the centralizer of any involution is a 2-group, and TI-groups where any Sylow 2-subgroups have trivial intersection.

In the area of modern algebra known as group theory, the Suzuki groups, denoted by Sz(22n+1), 2B2(22n+1), Suz(22n+1), or G(22n+1), form an infinite family of groups of Lie type found by Suzuki (1960), that are simple for n ≥ 1. These simple groups are the only finite non-abelian ones with orders not divisible by 3.

In mathematical finite group theory, Thompson's original uniqueness theorem states that in a minimal simple finite group of odd order there is a unique maximal subgroup containing a given elementary abelian subgroup of rank 3. Bender (1970) gave a shorter proof of the uniqueness theorem.

In mathematical finite group theory, the Dade isometry is an isometry from class function on a subgroup H with support on a subset K of H to class functions on a group G. It was introduced by Dade (1964) as a generalization and simplification of an isometry used by Feit & Thompson (1963) in their proof of the odd order theorem, and was used by Peterfalvi (2000) in his revision of the character theory of the odd order theorem.

Everett Clarence Dade is a mathematician at University of Illinois at Urbana–Champaign working on finite groups and representation theory, who introduced the Dade isometry and Dade's conjecture. While an undergraduate at Harvard University, he became a Putnam Fellow twice, in 1955 and 1957.

In mathematical finite group theory, the Thompson transitivity theorem gives conditions under which the centralizer of an abelian subgroup A acts transitively on certain subgroups normalized by A. It originated in the proof of the odd order theorem by Feit and Thompson (1963), where it was used to prove the Thompson uniqueness theorem.

In mathematics, a 3-step group is a special sort of group of Fitting length at most 3, that is used in the classification of CN groups and in the Feit–Thompson theorem. The definition of a 3-step group in these two cases is slightly different.

In mathematical representation theory, coherence is a property of sets of characters that allows one to extend an isometry from the degree-zero subspace of a space of characters to the whole space. The general notion of coherence was developed by Feit, as a generalization of the proof by Frobenius of the existence of a Frobenius kernel of a Frobenius group and of the work of Brauer and Suzuki on exceptional characters. Feit & Thompson developed coherence further in the proof of the Feit–Thompson theorem that all groups of odd order are solvable.

References