CRISPR interference

Last updated
Transcriptional repression via steric hindrance CRISPR Sterics.pdf
Transcriptional repression via steric hindrance

CRISPR interference (CRISPRi) is a genetic perturbation technique that allows for sequence-specific repression of gene expression in prokaryotic and eukaryotic cells. [1] It was first developed by Stanley Qi and colleagues in the laboratories of Wendell Lim, Adam Arkin, Jonathan Weissman, and Jennifer Doudna. [2] Sequence-specific activation of gene expression refers to CRISPR activation (CRISPRa).

Contents

Based on the bacterial genetic immune system - CRISPR (clustered regularly interspaced short palindromic repeats) pathway, [3] the technique provides a complementary approach to RNA interference. The difference between CRISPRi and RNAi, though, is that CRISPRi regulates gene expression primarily on the transcriptional level, while RNAi controls genes on the mRNA level.

Background

Many bacteria and most archaea have an adaptive immune system which incorporates CRISPR RNA (crRNA) and CRISPR-associated (cas) genes.

The CRISPR interference (CRISPRi) technique was first reported by Lei S. Qi and researchers at the University of California at San Francisco in early 2013. [2] The technology uses a catalytically dead Cas9 (usually denoted as dCas9) protein that lacks endonuclease activity to regulate genes in an RNA-guided manner. Targeting specificity is determined by complementary base-pairing of a single guide RNA (sgRNA) to the genomic locus. sgRNA is a chimeric noncoding RNA that can be subdivided into three regions: a 20 nt base-pairing sequence, a 42 nt dCas9-binding hairpin and a 40 nt terminator (bacteria, [4] [5] [6] yeast, [7] fruit flies, [8] zebrafish, [9] mice [10] ).

When designing a synthetic sgRNA, only the 20 nt base-pairing sequence is modified. Secondary variables must also be considered: off-target effects (for which a simple BLAST run of the base-pairing sequence is required), maintenance of the dCas9-binding hairpin structure, and ensuring that no restriction sites are present in the modified sgRNA, as this may pose a problem in downstream cloning steps. Due to the simplicity of sgRNA design, this technology is amenable to genome-wide scaling. [11] CRISPRi relies on the generation of catalytically inactive Cas9. This is accomplished by introducing point mutations in the two catalytic residues (D10A and H840A) of the gene encoding Cas9. [12] In doing so, dCas9 is unable to cleave dsDNA but retains the ability to target DNA. Together, sgRNA and dCas9 constitute a minimal system for gene-specific regulation. [2]

Transcriptional regulation

Repression

CRISPRi can sterically repress transcription by blocking either transcriptional initiation or elongation. This is accomplished by designing sgRNA complementary to the promoter or the exonic sequences. The level of transcriptional repression with a target within the coding sequence is strand-specific. Depending on the nature of the CRISPR effector, either the template or non-template strand leads to stronger repression. [13] For dCas9 (based on a Type-2 CRISPR system), repression is stronger when the guide RNA is complementary to the non-template strand. It has been suggested that this is due to the activity of helicase, which unwinds the RNA:DNA heteroduplex ahead of RNA pol II when the sgRNA is complementary to the template strand. Unlike transcription elongation block, silencing is independent of the targeted DNA strand when targeting the transcriptional start site. In prokaryotes, this steric inhibition can repress transcription of the target gene by almost 99.9%; in archaea, more than 90% repression was achieved; [14] in human cells, up to 90% repression was observed. [2] In bacteria, it is possible to saturate the target with a high enough level of dCas9 complex. In this case, the repression strength only depends on the probability that dCas9 is ejected upon collision with the RNA polymerase, which is determined by the guide sequence. [15] Higher temperatures are also associated with higher ejection probability, thus weaker repression. [15] In eukaryotes, CRISPRi can also repress transcription via an effector domain. Fusing a repressor domain to dCas9 allows transcription to be further repressed by inducing heterochromatinization. For example, the well-studied Krüppel associated box (KRAB) domain can be fused to dCas9 to repress transcription of the target gene up to 99% in human cells. [16]

Improvements on the efficiency

Whereas genome-editing by the catalytically active Cas9 nuclease can be accompanied by irreversible off-target genomic alterations, CRISPRi is highly specific with minimal off-target reversible effects for two distinct sgRNA sequences. [16] Nonetheless, several methods have been developed to improve the efficiency of transcriptional modulation. Identification of the transcription start site of a target gene and considering the preferences of sgRNA improves efficiency, as does the presence of accessible chromatin at the target site. [17]

Other methods

Along with other improvements mentioned, factors such as the distance from the transcription start and the local chromatin state may be critical parameters in determining activation/repression efficiency. Optimization of dCas9 and sgRNA expression, stability, nuclear localization, and interaction will likely allow for further improvement of CRISPRi efficiency in mammalian cells. [2]

Applications

Gene knockdown

A significant portion of the genome (both reporter and endogenous genes) in eukaryotes has been shown to be targetable using lentiviral constructs to express dCas9 and sgRNAs, with comparable efficiency to existing techniques such as RNAi and TALE proteins. [16] In tandem or as its own system, CRISPRi could be used to achieve the same applications as in RNAi.

For bacteria, gene knockdown by CRISPRi has been fully implemented and characterized (off-target analysis, leaky repression) for both Gram-negative E. coli [4] [6] and Gram-positive B. subtilis. [5]

Not only in bacteria but also in archaea (e.g., M. acetivorans) CRISPRi-Cas9 was successfully utilized to knockdown several genes/operons that related to nitrogen fixation. [14]

CRISPRi construction workflow CRISPRflowchart.pdf
CRISPRi construction workflow

Allelic series

Differential gene expression can be achieved by modifying the efficiency of sgRNA base-pairing to the target loci. [11] In theory, modulating this efficiency can be used to create an allelic series for any given gene, in essence creating a collection of hypo- and hypermorphs. These powerful collections can be used to probe any genetic investigation. For hypomorphs, this allows the incremental reduction of gene function as opposed to the binary nature of gene knockouts and the unpredictability of knockdowns. For hypermorphs, this is in contrast to the conventional method of cloning the gene of interest under promoters with variable strength.

Genome loci imaging

Fusing a fluorescent protein to dCas9 allows for imaging of genomic loci in living human cells. [18] Compared to fluorescence in situ hybridization (FISH), the method uniquely allows for dynamic tracking of chromosome loci. This has been used to study chromatin architecture and nuclear organization dynamics in laboratory cell lines including HeLa cells.

Stem cells

Activation of Yamanaka factors by CRISPRa has been used to induce pluripotency in human and mouse cells providing an alternative method to iPS technology. [19] [20] In addition, large-scale activation screens could be used to identify proteins that promote induced pluripotency or, conversely, promote differentiation to a specific cell lineage. [21]

Genetic screening

The ability to upregulate gene expression using dCas9-SunTag with a single sgRNA also opens the door to large-scale genetic screens, such as Perturb-seq, to uncover phenotypes that result from increased or decreased gene expression, which will be especially important for understanding the effects of gene regulation in cancer. [22] Furthermore, CRISPRi systems have been shown to be transferable via horizontal gene transfer mechanisms such as bacterial conjugation and specific repression of reporter genes in recipient cells has been demonstrated. CRISPRi could serve as a tool for genetic screening and potentially bacterial population control. [23]

Advantages and limitations

Advantages

  1. CRISPRi can silence a target gene of interest up to 99.9% repression. [11] The strength of the repression can also be tuned by changing the amount of complementarity between the guide RNA and the target. Contrary to inducible promoters, partial repression by CRISPRi does not add transcriptional noise to the target's expression. [15] Since the repression level is encoded in a DNA sequence, various expression levels can be grown in competition and identified by sequencing. [24]
  2. Since CRISPRi is based on Watson-Crick base-pairing of sgRNA-DNA and an NGG PAM motif, selection of targetable sites within the genome is straightforward and flexible. Carefully defined protocols have been developed. [11]
  3. Multiple sgRNAs can not only be used to control multiple different genes simultaneously (multiplex CRISPRi), but also to enhance the efficiency of regulating the same gene target. A popular strategy to express many sgRNAs simultaneously is to array the sgRNAs in a single construct with multiple promoters or processing elements. For example, Extra-Long sgRNA Arrays (ELSAs) use nonrepetitive parts to allow direct synthesis of 12-sgRNA arrays from a gene synthesis provider, can be directly integrated into the E. coli genome without homologous recombination occurring, and can simultaneously target many genes to achieve complex phenotypes. [25]
  4. While the two systems can be complementary, CRISPRi provides advantages over RNAi. As an exogenous system, CRISPRi does not compete with endogenous machinery such as microRNA expression or function. Furthermore, because CRISPRi acts at the DNA level, one can target transcripts such as noncoding RNAs, microRNAs, antisense transcripts, nuclear-localized RNAs, and polymerase III transcripts. Finally, CRISPRi possesses a much larger targetable sequence space; promoters and, in theory, introns can also be targeted. [16]
  5. In E. coli, construction of a gene knockdown strain is extremely fast and requires only one-step oligo recombineering. [6]

Limitations

  1. The requirement of a protospacer adjacent motif (PAM) sequence limits the number of potential target sequences. Cas9 and its homologs may use different PAM sequences, and therefore could theoretically be utilized to expand the number of potential target sequences. [11]
  2. Sequence specificity to target loci is only 14 nt long (12 nt of sgRNA and 2nt of the PAM), which can recur around 11 times in a human genome. [11] Repression is inversely correlated with the distance of the target site from the transcription start site. Genome-wide computational predictions or selection of Cas9 homologs with a longer PAM may reduce nonspecific targeting.
  3. Endogenous chromatin states and modifications may prevent the sequence-specific binding of the dCas9-sgRNA complex. [11] The level of transcriptional repression in mammalian cells varies between genes. Much work is needed to understand the role of local DNA conformation and chromatin in relation to binding and regulatory efficiency.
  4. CRISPRi can influence genes that are in close proximity to the target gene. This is especially important when targeting genes that either overlap other genes (sense or antisense overlapping) or are driven by a bidirectional promoter. [26]
  5. Sequence-specific toxicity has been reported in eukaryotes, with some sequences in the PAM-proximal region causing a large fitness burden. [27] This phenomenon, called the "bad seed effect", is still unexplained but can be reduced by optimizing the expression level of dCas9. [28]

Related Research Articles

Gene knockouts are a widely used genetic engineering technique that involves the targeted removal or inactivation of a specific gene within an organism's genome. This can be done through a variety of methods, including homologous recombination, CRISPR-Cas9, and TALENs.

Gene knockdown is an experimental technique by which the expression of one or more of an organism's genes is reduced. The reduction can occur either through genetic modification or by treatment with a reagent such as a short DNA or RNA oligonucleotide that has a sequence complementary to either gene or an mRNA transcript.

<span class="mw-page-title-main">Functional genomics</span> Field of molecular biology

Functional genomics is a field of molecular biology that attempts to describe gene functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects. Functional genomics focuses on the dynamic aspects such as gene transcription, translation, regulation of gene expression and protein–protein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structures. A key characteristic of functional genomics studies is their genome-wide approach to these questions, generally involving high-throughput methods rather than a more traditional "candidate-gene" approach.

<span class="mw-page-title-main">CRISPR</span> Family of DNA sequence found in prokaryotic organisms

CRISPR is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bacteriophages that had previously infected the prokaryote. They are used to detect and destroy DNA from similar bacteriophages during subsequent infections. Hence these sequences play a key role in the antiviral defense system of prokaryotes and provide a form of acquired immunity. CRISPR is found in approximately 50% of sequenced bacterial genomes and nearly 90% of sequenced archaea.

Guide RNA (gRNA) or single guide RNA (sgRNA) is a short sequence of RNA that functions as a guide for the Cas9-endonuclease or other Cas-proteins that cut the double-stranded DNA and thereby can be used for gene editing. In bacteria and archaea, gRNAs are a part of the CRISPR-Cas system that serves as an adaptive immune defense that protects the organism from viruses. Here the short gRNAs serve as detectors of foreign DNA and direct the Cas-enzymes that degrades the foreign nucleic acid.

<span class="mw-page-title-main">Insert (molecular biology)</span>

In Molecular biology, an insert is a piece of DNA that is inserted into a larger DNA vector by a recombinant DNA technique, such as ligation or recombination. This allows it to be multiplied, selected, further manipulated or expressed in a host organism.

<span class="mw-page-title-main">Genetic engineering techniques</span> Methods used to change the DNA of organisms

Genetic engineering techniques allow the modification of animal and plant genomes. Techniques have been devised to insert, delete, and modify DNA at multiple levels, ranging from a specific base pair in a specific gene to entire genes. There are a number of steps that are followed before a genetically modified organism (GMO) is created. Genetic engineers must first choose what gene they wish to insert, modify, or delete. The gene must then be isolated and incorporated, along with other genetic elements, into a suitable vector. This vector is then used to insert the gene into the host genome, creating a transgenic or edited organism.

<span class="mw-page-title-main">Cas9</span> Microbial protein found in Streptococcus pyogenes M1 GAS

Cas9 is a 160 kilodalton protein which plays a vital role in the immunological defense of certain bacteria against DNA viruses and plasmids, and is heavily utilized in genetic engineering applications. Its main function is to cut DNA and thereby alter a cell's genome. The CRISPR-Cas9 genome editing technique was a significant contributor to the Nobel Prize in Chemistry in 2020 being awarded to Emmanuelle Charpentier and Jennifer Doudna.

<span class="mw-page-title-main">Epigenome editing</span>

Epigenome editing or epigenome engineering is a type of genetic engineering in which the epigenome is modified at specific sites using engineered molecules targeted to those sites. Whereas gene editing involves changing the actual DNA sequence itself, epigenetic editing involves modifying and presenting DNA sequences to proteins and other DNA binding factors that influence DNA function. By "editing” epigenomic features in this manner, researchers can determine the exact biological role of an epigenetic modification at the site in question.

A protospacer adjacent motif (PAM) is a 2–6-base pair DNA sequence immediately following the DNA sequence targeted by the Cas9 nuclease in the CRISPR bacterial adaptive immune system. The PAM is a component of the invading virus or plasmid, but is not found in the bacterial host genome and hence is not a component of the bacterial CRISPR locus. Cas9 will not successfully bind to or cleave the target DNA sequence if it is not followed by the PAM sequence. PAM is an essential targeting component which distinguishes bacterial self from non-self DNA, thereby preventing the CRISPR locus from being targeted and destroyed by the CRISPR-associated nuclease.

<span class="mw-page-title-main">Cas12a</span> DNA-editing technology

Cas12a is a subtype of Cas12 proteins and an RNA-guided endonuclease that forms part of the CRISPR system in some bacteria and archaea. It originates as part of a bacterial immune mechanism, where it serves to destroy the genetic material of viruses and thus protect the cell and colony from viral infection. Cas12a and other CRISPR associated endonucleases use an RNA to target nucleic acid in a specific and programmable matter. In the organisms from which it originates, this guide RNA is a copy of a piece of foreign nucleic acid that previously infected the cell.

No-SCAR genome editing is an editing method that is able to manipulate the Escherichia coli genome. The system relies on recombineering whereby DNA sequences are combined and manipulated through homologous recombination. No-SCAR is able to manipulate the E. coli genome without the use of the chromosomal markers detailed in previous recombineering methods. Instead, the λ-Red recombination system facilitates donor DNA integration while Cas9 cleaves double-stranded DNA to counter-select against wild-type cells. Although λ-Red and Cas9 genome editing are widely used technologies, the no-SCAR method is novel in combining the two functions; this technique is able to establish point mutations, gene deletions, and short sequence insertions in several genomic loci with increased efficiency and time sensitivity.

Perturb-seq refers to a high-throughput method of performing single cell RNA sequencing (scRNA-seq) on pooled genetic perturbation screens. Perturb-seq combines multiplexed CRISPR mediated gene inactivations with single cell RNA sequencing to assess comprehensive gene expression phenotypes for each perturbation. Inferring a gene’s function by applying genetic perturbations to knock down or knock out a gene and studying the resulting phenotype is known as reverse genetics. Perturb-seq is a reverse genetics approach that allows for the investigation of phenotypes at the level of the transcriptome, to elucidate gene functions in many cells, in a massively parallel fashion.

CRISPR-Display (CRISP-Disp) is a modification of the CRISPR/Cas9 system for genome editing. The CRISPR/Cas9 system uses a short guide RNA (sgRNA) sequence to direct a Streptococcus pyogenes Cas9 nuclease, acting as a programmable DNA binding protein, to cleave DNA at a site of interest.

CRISPR activation (CRISPRa) is a type of CRISPR tool that uses modified versions of CRISPR effectors without endonuclease activity, with added transcriptional activators on dCas9 or the guide RNAs (gRNAs).

Off-target genome editing refers to nonspecific and unintended genetic modifications that can arise through the use of engineered nuclease technologies such as: clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9, transcription activator-like effector nucleases (TALEN), meganucleases, and zinc finger nucleases (ZFN). These tools use different mechanisms to bind a predetermined sequence of DNA (“target”), which they cleave, creating a double-stranded chromosomal break (DSB) that summons the cell's DNA repair mechanisms and leads to site-specific modifications. If these complexes do not bind at the target, often a result of homologous sequences and/or mismatch tolerance, they will cleave off-target DSB and cause non-specific genetic modifications. Specifically, off-target effects consist of unintended point mutations, deletions, insertions inversions, and translocations.

<span class="mw-page-title-main">CRISPR gene editing</span> Gene editing method

CRISPR gene editing is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified. It is based on a simplified version of the bacterial CRISPR-Cas9 antiviral defense system. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added in vivo.

<span class="mw-page-title-main">Anti-CRISPR</span> Group of proteins found in phages

Anti-CRISPR is a group of proteins found in phages, that inhibit the normal activity of CRISPR-Cas, the immune system of certain bacteria. CRISPR consists of genomic sequences that can be found in prokaryotic organisms, that come from bacteriophages that infected the bacteria beforehand, and are used to defend the cell from further viral attacks. Anti-CRISPR results from an evolutionary process occurred in phages in order to avoid having their genomes destroyed by the prokaryotic cells that they will infect.

<span class="mw-page-title-main">Genome-wide CRISPR-Cas9 knockout screens</span> Research tool in genomics

Genome-wide CRISPR-Cas9 knockout screens aim to elucidate the relationship between genotype and phenotype by ablating gene expression on a genome-wide scale and studying the resulting phenotypic alterations. The approach utilises the CRISPR-Cas9 gene editing system, coupled with libraries of single guide RNAs (sgRNAs), which are designed to target every gene in the genome. Over recent years, the genome-wide CRISPR screen has emerged as a powerful tool for performing large-scale loss-of-function screens, with low noise, high knockout efficiency and minimal off-target effects.

<span class="mw-page-title-main">GESTALT</span> Method for lineage tracing using CRISPR-Cas9-edited barcodes

Genome editing of synthetic target arrays for lineage tracing (GESTALT) is a method used to determine the developmental lineages of cells in multicellular systems. GESTALT involves introducing a small DNA barcode that contains regularly spaced CRISPR/Cas9 target sites into the genomes of progenitor cells. Alongside the barcode, Cas9 and sgRNA are introduced into the cells. Mutations in the barcode accumulate during the course of cell divisions and the unique combination of mutations in a cell's barcode can be determined by DNA or RNA sequencing to link it to a developmental lineage.

References

  1. Jensen TI, Mikkelsen NS, Gao Z, Foßelteder J, Pabst G, Axelgaard E, et al. (November 2021). "Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi". Genome Research. 31 (11): 2120–2130. doi:10.1101/gr.275607.121. PMC   8559706 . PMID   34407984.
  2. 1 2 3 4 5 Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (February 2013). "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression". Cell. 152 (5): 1173–1183. doi:10.1016/j.cell.2013.02.022. PMC   3664290 . PMID   23452860.
  3. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. (March 2007). "CRISPR provides acquired resistance against viruses in prokaryotes". Science. 315 (5819): 1709–1712. Bibcode:2007Sci...315.1709B. doi:10.1126/science.1138140. hdl: 20.500.11794/38902 . PMID   17379808. S2CID   3888761.
  4. 1 2 Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (March 2013). "RNA-guided editing of bacterial genomes using CRISPR-Cas systems". Nature Biotechnology. 31 (3): 233–239. doi:10.1038/nbt.2508. PMC   3748948 . PMID   23360965.
  5. 1 2 Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, et al. (June 2016). "A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria". Cell. 165 (6): 1493–1506. doi:10.1016/j.cell.2016.05.003. PMC   4894308 . PMID   27238023.
  6. 1 2 3 Li XT, Jun Y, Erickstad MJ, Brown SD, Parks A, Court DL, Jun S (December 2016). "tCRISPRi: tunable and reversible, one-step control of gene expression". Scientific Reports. 6: 39076. Bibcode:2016NatSR...639076L. doi:10.1038/srep39076. PMC   5171832 . PMID   27996021.
  7. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (April 2013). "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems". Nucleic Acids Research. 41 (7): 4336–4343. doi:10.1093/nar/gkt135. PMC   3627607 . PMID   23460208.
  8. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, et al. (August 2013). "Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease". Genetics. 194 (4): 1029–1035. doi:10.1534/genetics.113.152710. PMC   3730909 . PMID   23709638.
  9. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. (March 2013). "Efficient genome editing in zebrafish using a CRISPR-Cas system". Nature Biotechnology. 31 (3): 227–229. doi:10.1038/nbt.2501. PMC   3686313 . PMID   23360964.
  10. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (May 2013). "One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering". Cell. 153 (4): 910–918. doi:10.1016/j.cell.2013.04.025. PMC   3969854 . PMID   23643243.
  11. 1 2 3 4 5 6 7 Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (November 2013). "CRISPR interference (CRISPRi) for sequence-specific control of gene expression". Nature Protocols. 8 (11): 2180–2196. doi:10.1038/nprot.2013.132. PMC   3922765 . PMID   24136345.
  12. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (August 2012). "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity". Science. 337 (6096): 816–821. Bibcode:2012Sci...337..816J. doi:10.1126/science.1225829. PMC   6286148 . PMID   22745249.
  13. Vigouroux A, Bikard D (May 2020). "CRISPR Tools To Control Gene Expression in Bacteria". Microbiology and Molecular Biology Reviews. 84 (2). doi:10.1128/MMBR.00077-19. PMC   7117552 . PMID   32238445.
  14. 1 2 Dhamad AE, Lessner DJ (October 2020). Atomi H (ed.). "A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans". Applied and Environmental Microbiology. 86 (21): e01402–20. Bibcode:2020ApEnM..86E1402D. doi:10.1128/AEM.01402-20. PMC   7580536 . PMID   32826220.
  15. 1 2 3 Vigouroux A, Oldewurtel E, Cui L, Bikard D, van Teeffelen S (March 2018). "Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes". Molecular Systems Biology. 14 (3): e7899. doi:10.15252/msb.20177899. PMC   5842579 . PMID   29519933.
  16. 1 2 3 4 Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. (July 2013). "CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes". Cell. 154 (2): 442–451. doi:10.1016/j.cell.2013.06.044. PMC   3770145 . PMID   23849981.
  17. Radzisheuskaya A, Shlyueva D, Müller I, Helin K (October 2016). "Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression". Nucleic Acids Research. 44 (18): e141. doi:10.1093/nar/gkw583. PMC   5062975 . PMID   27353328.
  18. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, et al. (December 2013). "Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system". Cell. 155 (7): 1479–1491. doi:10.1016/j.cell.2013.12.001. PMC   3918502 . PMID   24360272.
  19. Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R (January 2014). "Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells". Development. 141 (1): 219–223. doi:10.1242/dev.103341. PMC   3865759 . PMID   24346702.
  20. Hu J, Lei Y, Wong WK, Liu S, Lee KC, He X, et al. (April 2014). "Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors". Nucleic Acids Research. 42 (7): 4375–4390. doi:10.1093/nar/gku109. PMC   3985678 . PMID   24500196.
  21. Takahashi K, Yamanaka S (August 2006). "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors". Cell. 126 (4): 663–676. doi:10.1016/j.cell.2006.07.024. hdl: 2433/159777 . PMID   16904174. S2CID   1565219.
  22. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (October 2014). "A protein-tagging system for signal amplification in gene expression and fluorescence imaging". Cell. 159 (3): 635–646. doi:10.1016/j.cell.2014.09.039. PMC   4252608 . PMID   25307933.
  23. Ji W, Lee D, Wong E, Dadlani P, Dinh D, Huang V, et al. (December 2014). "Specific gene repression by CRISPRi system transferred through bacterial conjugation". ACS Synthetic Biology. 3 (12): 929–931. doi:10.1021/sb500036q. PMC   4277763 . PMID   25409531.
  24. Hawkins JS, Silvis MR, Koo BM, Peters JM, Jost M, Hearne CC, et al. (2019-10-15). "Modulated efficacy CRISPRi reveals evolutionary conservation of essential gene expression-fitness relationships in bacteria". bioRxiv: 805333. doi: 10.1101/805333 . S2CID   208583386 . Retrieved 2020-01-16.
  25. Reis AC, Halper SM, Vezeau GE, Cetnar DP, Hossain A, Clauer PR, Salis HM (November 2019). "Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays". Nature Biotechnology. 37 (11): 1294–1301. doi:10.1038/s41587-019-0286-9. OSTI   1569832. PMID   31591552. S2CID   203852115.
  26. Goyal A, Myacheva K, Groß M, Klingenberg M, Duran Arqué B, Diederichs S (February 2017). "Challenges of CRISPR/Cas9 applications for long non-coding RNA genes". Nucleic Acids Research. 45 (3): e12. doi:10.1093/nar/gkw883. PMC   5388423 . PMID   28180319.
  27. Cui L, Vigouroux A, Rousset F, Varet H, Khanna V, Bikard D (May 2018). "A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9". Nature Communications. 9 (1): 1912. Bibcode:2018NatCo...9.1912C. doi:10.1038/s41467-018-04209-5. PMC   5954155 . PMID   29765036.
  28. Depardieu F, Bikard D (February 2020). "Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels" (PDF). Methods. Methods for characterizing, applying, and teaching CRISPR-Cas systems. 172: 61–75. doi:10.1016/j.ymeth.2019.07.024. PMID   31377338. S2CID   199436713.