Calkin correspondence

Last updated

In mathematics, the Calkin correspondence, named after mathematician John Williams Calkin, is a bijective correspondence between two-sided ideals of bounded linear operators of a separable infinite-dimensional Hilbert space and Calkin sequence spaces (also called rearrangement invariant sequence spaces). The correspondence is implemented by mapping an operator to its singular value sequence.

Contents

It originated from John von Neumann's study of symmetric norms on matrix algebras. [1] It provides a fundamental classification and tool for the study of two-sided ideals of compact operators and their traces, by reducing problems about operator spaces to (more resolvable) problems on sequence spaces.

Definitions

A two-sided idealJ of the bounded linear operators B(H) on a separable Hilbert space H is a linear subspace such that AB and BA belong to J for all operators A from J and B from B(H).

A sequence space j within l can be embedded in B(H) using an arbitrary orthonormal basis {en }n=0. Associate to a sequence a from j the bounded operator

where bra–ket notation has been used for the one-dimensional projections onto the subspaces spanned by individual basis vectors. The sequence of absolute values of the entries of a in decreasing order is called the decreasing rearrangement of a. The decreasing rearrangement can be denoted μ(n,a), n = 0, 1, 2, ... Note that it is identical to the singular values of the operator diag(a). Another notation for the decreasing rearrangement is a*.

A Calkin (or rearrangement invariant) sequence space is a linear subspace j of the bounded sequences l such that if a is a bounded sequence and μ(n,a) ≤ μ(n,b), n = 0, 1, 2, ..., for some b in j, then a belongs to j.

Correspondence

Associate to a two-sided ideal J the sequence space j given by

Associate to a sequence space j the two-sided ideal J given by

Here μ(A) and μ(a) are the singular values of the operators A and diag(a), respectively. Calkin's Theorem [2] states that the two maps are inverse to each other. We obtain,

Calkin correspondence: The two-sided ideals of bounded operators on an infinite dimensional separable Hilbert space and the Calkin sequence spaces are in bijective correspondence.

It is sufficient to know the association only between positive operators and positive sequences, hence the map μ: J+  j+ from a positive operator to its singular values implements the Calkin correspondence.

Another way of interpreting the Calkin correspondence, since the sequence space j is equivalent as a Banach space to the operators in the operator ideal J that are diagonal with respect to an arbitrary orthonormal basis, is that two-sided ideals are completely determined by their diagonal operators.

Examples

Suppose H is a separable infinite-dimensional Hilbert space.

Notes

  1. J. von Neumann (1937). "Some matrix inequalities and metrization of matrix space". Tomsk. University Review. 1: 286–300.
  2. J. W. Calkin (1941). "Two-sided ideals and congruences in the ring of bounded operators in Hiulbert space". Ann. Math. 2. 42 (4): 839–873. doi:10.2307/1968771. JSTOR   1968771.

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

C-algebras are subjects of research in functional analysis, a branch of mathematics. A C*-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

Functional analysis branch of mathematical analysis concerned with infinite-dimensional topological vector spaces, often spaces of functions

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematics, a self-adjoint operator on a finite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint: for all vectors v and w. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematics, a trace-class operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis. Trace-class operators are essentially the same as nuclear operators, though many authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces and reserve "nuclear operator" for usage in more general Banach spaces.

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In functional analysis, a branch of mathematics, a compact operator is a linear operator L from a Banach space X to another Banach space Y, such that the image under L of any bounded subset of X is a relatively compact subset of Y. Such an operator is necessarily a bounded operator, and so continuous.

In functional analysis, the Calkin algebra, named after John Williams Calkin, is the quotient of B(H), the ring of bounded linear operators on a separable infinite-dimensional Hilbert space H, by the ideal K(H) of compact operators. Here the addition in B(H) is addition of operators and the multiplication in B(H) is composition of operators; it is easy to verify that these operations make B(H) into a ring. When scalar multiplication is also included, B(H) becomes in fact an algebra over the same field over which H is a Hilbert space.

The spectrum of a linear operator that operates on a Banach space consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:

The concept of system of imprimitivity is used in mathematics, particularly in algebra and analysis, both within the context of the theory of group representations. It was used by George Mackey as the basis for his theory of induced unitary representations of locally compact groups.

In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.

In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in K, and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space.

In functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

In operator theory, a bounded operator T: XY between normed vector spaces X and Y is said to be a contraction if its operator norm ||T|| ≤ 1. Every bounded operator becomes a contraction after suitable scaling. The analysis of contractions provides insight into the structure of operators, or a family of operators. The theory of contractions on Hilbert space is largely due to Béla Szőkefalvi-Nagy and Ciprian Foias.

Hilbert space inner product space that is metrically complete; a Banach space whose norm induces an inner product (follows the parallelogram identity)

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.

In mathematics, a singular trace is a trace on a space of linear operators of a separable Hilbert space that vanishes on operators of finite rank. Singular traces are a feature of infinite-dimensional Hilbert spaces such as the space of square-summable sequences and spaces of square-integrable functions. Linear operators on a finite-dimensional Hilbert space have only the zero functional as a singular trace since all operators have finite rank. For example, matrix algebras have no non-trivial singular traces and the matrix trace is the unique trace up to scaling.

In mathematics, a weak trace class operator is a compact operator on a separable Hilbert space H with singular values the same order as the harmonic sequence. When the dimension of H is infinite, the ideal of weak trace-class operators is strictly larger than the ideal of trace class operators, and has fundamentally different properties. The usual operator trace on the trace-class operators does not extend to the weak trace class. Instead the ideal of weak trace-class operators admits an infinite number of linearly independent quasi-continuous traces, and it is the smallest two-sided ideal for which all traces on it are singular traces.

In mathematics, the commutator subspace of a two-sided ideal of bounded linear operators on a separable Hilbert space is the linear subspace spanned by commutators of operators in the ideal with bounded operators. Modern characterisation of the commutator subspace is through the Calkin correspondence and it involves the invariance of the Calkin sequence space of an operator ideal to taking Cesàro means. This explicit spectral characterisation reduces problems and questions about commutators and traces on two-sided ideals to problems and conditions on sequence spaces.

References