Capital intensity

Last updated

Capital intensity is the amount of fixed or real capital present in relation to other factors of production, especially labor. At the level of either a production process or the aggregate economy, it may be estimated by the capital to labor ratio, such as from the points along a capital/labor isoquant. The inverse of capital intensity is labor intensity. Capital intensity is sometimes associated with industrialism, while labor intensity is sometimes associated with agrarianism.

Contents

Growth

The use of tools and machinery makes labor more effective, so rising capital intensity (or "capital deepening") pushes up the productivity of labor. Capital intensive societies tend to have a higher standard of living over the long run.

Calculations made by Robert Solow claimed that economic growth was mainly driven by technological progress (productivity growth) rather than inputs of capital and labor. However recent economic research has invalidated that theory, since Solow did not properly consider changes in both investment and labor inputs.[ dubious ]

Dale Jorgenson, of Harvard University, President of the American Economic Association in 2000, concludes that: 'Griliches and I showed that changes in the quality of capital and labor inputs and the quality of investment goods explained most of the Solow residual. We estimated that capital and labor inputs accounted for 85 percent of growth during the period 1945–1965, while only 15 percent could be attributed to productivity growth… This has precipitated the sudden obsolescence of earlier productivity research employing the conventions of Kuznets and Solow.' [1]

John Ross has analysed the long term correlation between the level of investment in the economy, rising from 5-7% of GDP at the time of the Industrial Revolution in England, to 25% of GDP in the post-war German 'economic miracle', to over 35% of GDP in the world's most rapidly growing contemporary economies of India and China. [2]

Taking the G7 and other largest economies, Jorgenson and Vu conclude: 'the growth of world output between input growth and productivity… input growth greatly predominated… Productivity growth accounted for only one-fifth of the total during 1989-1995, while input growth accounted for almost four-fifths. Similarly, input growth accounted for more than 70 percent of growth after 1995, while productivity accounted for less than 30 percent.'

Regarding differences in output per capita Jorgenson and Vu conclude: 'differences in per capita output levels are primarily explained by differences in per capital input, rather than variations in productivity'. [3]

Some economists claimed that the Soviet Union missed the lessons of the Solow growth model, because starting in the 1930s, the Stalin government attempted to force capital accumulation through state direction of the economy. However, Solow's calculations have been proven invalid, so this is a poor explanation. Modern research shows the main factor for economic growth is the growth of labor and capital inputs, not increases in productivity.[ citation needed ] Therefore, other factors besides capital accumulation must have been big contributors to the Soviet economic crisis.

Free market economists tend to believe that capital accumulation should be not be managed by government, but instead be determined by market forces. Monetary stability (which increases confidence), low taxation, and greater freedom for the entrepreneur would then promote capital accumulation.

The Austrian School maintains that the capital intensity of any industry is due to the roundaboutness of the particular industry and consumer demand.

Capital-intensive industry

Capital intensive industry uses a large portion of capital to buy expensive machines, compared to their labor costs. The term came about in the mid- to late-nineteenth century as factories such as steel mills sprung up around the newly industrialized world. [4] With the added expense of machinery, there was greater financial risk. This makes new capital-intensive factories with high tech machinery a small share of the marketplace, even though they raise productivity and output. [5] Some businesses commonly thought to be capital-intensive are railways, aircraft manufacturing, airlines, oil production and refining, telecommunications, semiconductor fabrication, mining, chemical plants, electric power plants, etc.

Measurement

The degree of capital intensity is easy to measure in nominal terms. It is simply the ratio of the total money value of capital equipment to the total potential output. However, this measure need not be related to real economic activity because it can rise due to inflation. Then the question arises, how do we measure the "real" amount of capital goods? Do we use book value (historical price)? or replacement cost? or the price justified by the present discounted value of future profits? Or do we simply "deflate" the total current money value of capital equipment by the average price of capital goods?

This capital controversy points out that measure of capital intensity is not independent of the distribution of income, so that changes in the ratio of profits to wages lead to changes in measured capital intensity.

See also

Related Research Articles

<span class="mw-page-title-main">Gross domestic product</span> Market value of goods and services produced within a country

Gross domestic product (GDP) is a monetary measure of the market value of all the final goods and services produced in a specific time period by a country or countries. GDP is more often used by the government of a single country to measure its economic health. Due to its complex and subjective nature, this measure is often revised before being considered a reliable indicator.

<span class="mw-page-title-main">Macroeconomics</span> Study of an economy as a whole

Macroeconomics is a branch of economics that deals with the performance, structure, behavior, and decision-making of an economy as a whole. This includes regional, national, and global economies. Macroeconomists study topics such as output/GDP and national income, unemployment, price indices and inflation, consumption, saving, investment, energy, international trade, and international finance.

<span class="mw-page-title-main">Economic growth</span> Measure of increase in market value of goods

Economic growth can be defined as the increase or improvement in the inflation-adjusted market value of the goods and services produced by an economy in a financial year. Statisticians conventionally measure such growth as the percent rate of increase in the real and nominal gross domestic product (GDP).

Growth accounting is a procedure used in economics to measure the contribution of different factors to economic growth and to indirectly compute the rate of technological progress, measured as a residual, in an economy. Growth accounting decomposes the growth rate of an economy's total output into that which is due to increases in the contributing amount of the factors used—usually the increase in the amount of capital and labor—and that which cannot be accounted for by observable changes in factor utilization. The unexplained part of growth in GDP is then taken to represent increases in productivity or a measure of broadly defined technological progress.

<span class="mw-page-title-main">Production function</span> Used to define marginal product and to distinguish allocative efficiency

In economics, a production function gives the technological relation between quantities of physical inputs and quantities of output of goods. The production function is one of the key concepts of mainstream neoclassical theories, used to define marginal product and to distinguish allocative efficiency, a key focus of economics. One important purpose of the production function is to address allocative efficiency in the use of factor inputs in production and the resulting distribution of income to those factors, while abstracting away from the technological problems of achieving technical efficiency, as an engineer or professional manager might understand it.

Productivity is the efficiency of production of goods or services expressed by some measure. Measurements of productivity are often expressed as a ratio of an aggregate output to a single input or an aggregate input used in a production process, i.e. output per unit of input, typically over a specific period of time. The most common example is the (aggregate) labour productivity measure, one example of which is GDP per worker. There are many different definitions of productivity and the choice among them depends on the purpose of the productivity measurement and data availability. The key source of difference between various productivity measures is also usually related to how the outputs and the inputs are aggregated to obtain such a ratio-type measure of productivity.

The accelerator effect in economics is a positive effect on private fixed investment of the growth of the market economy. Rising GDP implies that businesses in general see rising profits, increased sales and cash flow, and greater use of existing capacity. This usually implies that profit expectations and business confidence rise, encouraging businesses to build more factories and other buildings and to install more machinery. This may lead to further growth of the economy through the stimulation of consumer incomes and purchases, i.e., via the multiplier effect.

The organic composition of capital (OCC) is a concept created by Karl Marx in his theory of capitalism, which was simultaneously his critique of the political economy of his time. It is derived from his more basic concepts of 'value composition of capital' and 'technical composition of capital'. Marx defines the organic composition of capital as "the value-composition of capital, in so far as it is determined by its technical composition and mirrors the changes of the latter". The 'technical composition of capital' measures the relation between the elements of constant capital and variable capital. It is 'technical' because no valuation is here involved. In contrast, the 'value composition of capital' is the ratio between the value of the elements of constant capital involved in production and the value of the labor. Marx found that the special concept of 'organic composition of capital' was sometimes useful in analysis, since it assumes that the relative values of all the elements of capital are constant.

In economics, output is the quantity and quality of goods or services produced in a given time period, within a given economic network, whether consumed or used for further production. The economic network may be a firm, industry, or nation. The concept of national output is essential in the field of macroeconomics. It is national output that makes a country rich, not large amounts of money.

Labor intensity is the relative proportion of labor used in any given process. Its inverse is capital intensity. Labor intensity is sometimes associated with agrarianism, while capital intensity is sometimes associated with industrialism.

The Solow residual is a number describing empirical productivity growth in an economy from year to year and decade to decade. Robert Solow, the Nobel Memorial Prize in Economic Sciences-winning economist, defined rising productivity as rising output with constant capital and labor input. It is a "residual" because it is the part of growth that is not accounted for by measures of capital accumulation or increased labor input. Increased physical throughput – i.e. environmental resources – is specifically excluded from the calculation; thus some portion of the residual can be ascribed to increased physical throughput. The example used is for the intracapital substitution of aluminium fixtures for steel during which the inputs do not alter. This differs in almost every other economic circumstance in which there are many other variables. The Solow residual is procyclical and measures of it are now called the rate of growth of multifactor productivity or total factor productivity, though Solow (1957) did not use these terms.

In economics, total-factor productivity (TFP), also called multi-factor productivity, is usually measured as the ratio of aggregate output to aggregate inputs. Under some simplifying assumptions about the production technology, growth in TFP becomes the portion of growth in output not explained by growth in traditionally measured inputs of labour and capital used in production. TFP is calculated by dividing output by the weighted geometric average of labour and capital input, with the standard weighting of 0.7 for labour and 0.3 for capital. Total factor productivity is a measure of productive efficiency in that it measures how much output can be produced from a certain amount of inputs. It accounts for part of the differences in cross-country per-capita income. For relatively small percentage changes, the rate of TFP growth can be estimated by subtracting growth rates of labor and capital inputs from the growth rate of output.

The Solow–Swan model or exogenous growth model is an economic model of long-run economic growth. It attempts to explain long-run economic growth by looking at capital accumulation, labor or population growth, and increases in productivity largely driven by technological progress. At its core, it is an aggregate production function, often specified to be of Cobb–Douglas type, which enables the model "to make contact with microeconomics". The model was developed independently by Robert Solow and Trevor Swan in 1956, and superseded the Keynesian Harrod–Domar model.

The productivity paradox, also referred to as the Solow paradox, could refer either to the slowdown in productivity growth in the United States in the 1970s and 1980s despite rapid development in the field of information technology (IT) over the same period, or to the slowdown in productivity growth in the United States and developed countries from the 2000s to 2020s; sometimes the newer slowdown is referred to as the productivity slowdown, the productivity puzzle, or the productivity paradox 2.0. The 1970s to 1980s productivity paradox inspired many research efforts at explaining the slowdown, only for the paradox to disappear with renewed productivity growth in the developed countries in the 1990s. However, issues raised by those research efforts remain important in the study of productivity growth in general, and became important again when productivity growth slowed around the world again from the 2000s to the present day.

Domar aggregation is an approach to aggregating growth measures associated with industries to make larger sector or national aggregate growth rates. The issue comes up in the context of national accounts and multifactor productivity (MFP) statistics.

<span class="mw-page-title-main">Dale W. Jorgenson</span> American economist (1933–2022)

Dale Weldeau Jorgenson was an American economist who served as the Samuel W. Morris University Professor at Harvard University. An influential econometric scholar, he was famed for his work on the relationship between productivity and economic growth, the economics of climate change, and the intersection between economics and statistics. Described as a "master" of his field, he received the John Bates Clark Medal in 1971, and was described as a worthy contender for the Nobel Memorial Prize in Economic Sciences.

Production is the process of combining various inputs, both material and immaterial in order to create output. Ideally this output will be a good or service which has value and contributes to the utility of individuals. The area of economics that focuses on production is called production theory, and it is closely related to the consumption theory of economics.

The Fei–Ranis model of economic growth is a dualism model in developmental economics or welfare economics that has been developed by John C. H. Fei and Gustav Ranis and can be understood as an extension of the Lewis model. It is also known as the Surplus Labor model. It recognizes the presence of a dual economy comprising both the modern and the primitive sector and takes the economic situation of unemployment and underemployment of resources into account, unlike many other growth models that consider underdeveloped countries to be homogenous in nature. According to this theory, the primitive sector consists of the existing agricultural sector in the economy, and the modern sector is the rapidly emerging but small industrial sector. Both the sectors co-exist in the economy, wherein lies the crux of the development problem. Development can be brought about only by a complete shift in the focal point of progress from the agricultural to the industrial economy, such that there is augmentation of industrial output. This is done by transfer of labor from the agricultural sector to the industrial one, showing that underdeveloped countries do not suffer from constraints of labor supply. At the same time, growth in the agricultural sector must not be negligible and its output should be sufficient to support the whole economy with food and raw materials. Like in the Harrod–Domar model, saving and investment become the driving forces when it comes to economic development of underdeveloped countries.

The Cambridge capital controversy, sometimes called "the capital controversy" or "the two Cambridges debate", was a dispute between proponents of two differing theoretical and mathematical positions in economics that started in the 1950s and lasted well into the 1960s. The debate concerned the nature and role of capital goods and a critique of the neoclassical vision of aggregate production and distribution. The name arises from the location of the principals involved in the controversy: the debate was largely between economists such as Joan Robinson and Piero Sraffa at the University of Cambridge in England and economists such as Paul Samuelson and Robert Solow at the Massachusetts Institute of Technology, in Cambridge, Massachusetts, United States.

In Marxian economics, surplus value is the difference between the amount raised through a sale of a product and the amount it cost to manufacture it: i.e. the amount raised through sale of the product minus the cost of the materials, plant and labour power. The concept originated in Ricardian socialism, with the term "surplus value" itself being coined by William Thompson in 1824; however, it was not consistently distinguished from the related concepts of surplus labor and surplus product. The concept was subsequently developed and popularized by Karl Marx. Marx's formulation is the standard sense and the primary basis for further developments, though how much of Marx's concept is original and distinct from the Ricardian concept is disputed. Marx's term is the German word "Mehrwert", which simply means value added, and is cognate to English "more worth".

References

  1. "The Economics of Productivity" (PDF). Archived from the original on 2009-09-20. Retrieved 2009-05-28.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  2. "Investment, Savings and Growth - International Experience Relevant to Some Current Economic Issues Facing China". Key Trends in Globalisation. 8 May 2009.
  3. Jorgenson, Dale W.; Vu, Khuong (2005). "Information Technology and the World Economy" (PDF). Scandinavian Journal of Economics . 107 (4): 631–650. doi:10.1111/j.1467-9442.2005.00430.x. S2CID   18602257.
  4. Hunt, Lynn; Martin, Thomas R.; Rosenzweig, Barbara H.; Asia, R. P.; Smith, Bonnie G. (2009). The Making of the West: Peoples and Cultures. Vol. C (3rd ed.). Boston: Bedford/St. Martin's. p. 730. ISBN   978-0-312-45295-7.
  5. "Capital Intensive: What You Need to Know".