Carbene radical

Last updated
Bonding Scheme of Carbene Radical Complexes as compared to Schrock and Fischer-type carbene complexes Bonding scheme carbene radical.png
Bonding Scheme of Carbene Radical Complexes as compared to Schrock and Fischer-type carbene complexes

Carbene radicals are a special class of organometallic carbenes. The carbene radical can be formed by one-electron reduction of Fischer-type carbenes using an external reducing agent, or directly upon carbene formation at an open-shell transition metal complex (in particular low-spin cobalt(II) complexes) using diazo compounds and related carbene precursors. [1] Cobalt(III)-carbene radicals have found catalytic applications in cyclopropanation reactions, [2] [3] [4] as well as in a variety of other catalytic radical-type ring-closing reactions. [5] [6] [7] [8]

Contents

Theoretical calculations and EPR studies confirmed their radical-type behaviour and explained the bonding interactions underlying the stability of the carbene radical. [9] [10] Stable carbene radicals of other metals are known, [1] but the catalytically relevant cobalt(III)-carbene radicals have thus far only been synthesized as long-lived reactive intermediates. [11] [12]

Examples of Radical-type Reactions involving Carbene Radical Complexes Radical type reactions carbene radicals.png
Examples of Radical-type Reactions involving Carbene Radical Complexes

Bonding interactions and Radical Reactivity

Example of carbene radical reaction intermediate generated by reaction of cobalt porphyrin and CHCO2Et ligand. s donation from the ligand to the "dz " orbital on the cobalt metal center occurs concurrent with p* back-donation from the t2g symmetry orbitals. Carbene radical bonding.png
Example of carbene radical reaction intermediate generated by reaction of cobalt porphyrin and CHCO2Et ligand. σ donation from the ligand to the "dz " orbital on the cobalt metal center occurs concurrent with π* back-donation from the t2g symmetry orbitals.

The chemical bond present in carbene radicals is surprising in that it possesses aspects of both Fischer and Schrock type carbenes. [1] [9] [10] As a result, the cobalt carbene radical complexes have discrete radical-character at their carbon atom, thus giving rise to interesting catalytic radical-type reaction pathways.

The mechanism of formation of a carbene radical at cobalt(II) typically involves carbene generation at the metal with simultaneous intramolecular electron transfer from the metal into the metal-carbene π* anti-bonding molecular orbital constructed from the metal d-orbital and the carbene p-orbital. As such, carbene radicals are perhaps best described as 'one-electron reduced Fischer-type carbenes'. [1]

Second Coordination Sphere Hydrogen-Bonding Effects in Controlling Carbene Radical Reactivity Carbene radical H bonding.png
Second Coordination Sphere Hydrogen-Bonding Effects in Controlling Carbene Radical Reactivity

Discrete electron transfer from a sigma-type metal d-orbital (typically the dz2 orbital) occurs, [1] [10] leads the typical radical character of the carbene carbon. This behaviour not only explains the carbon-centered radical-type reactivity of these complexes, but also their reduced electrophilicity (suppressing carbene-carbene dimerisation side reactions) as well as their enhanced reactivity to electron-deficient substrates. Furthermore, second coordination sphere hydrogen-bonding interactions give rise to faster reactions because H-bonds are stronger to the reduced carbene as compared to the precursor. [9] Such H-bonding interactions can also facilitate chirality transfer in enantioselective carbene-transfer reactions. [13]

In order for the σ bond to be stabilized (typically with a bond order slightly less than 1), a back-bonding action from the π molecular orbital to the anti-bonding π* molecular orbital is necessary and the porphyrin ring serves as an electron π-symmetry "buffer" to ensure this interaction is obtained. [10]

The back-donation to the π* orbital would result in unfavorable excess electron density on the carbene carbon but the presence of adjacent functional groups (carbonyl or sulfonyl groups have the desired electronegativity) relieve this electron build-up and yield the final radical electron, which occupies a single p atomic orbital state on the carbon. [10]

See also

Related Research Articles

Ketene

A ketene is an organic compound of the form R′R″C=C=O, where R and R' are two arbitrary monovalent chemical groups. The name may also refer to the specific compound ethenone H2C=C=O, the simplest ketene.

In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is R−:C−R' or R=C: where the R represents substituents or hydrogen atoms.

In organic chemistry, a carbyne is a general term for any compound whose structure consists of an electrically neutral carbon atom connected by a single covalent bond and has three non-bonded electrons. The carbon atom has either one or three unpaired electrons, depending on its excitation state; making it a radical. The chemical formula can be written R−C· or R−C, or just CH.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

Persistent carbene In organic chemistry, a type of carbene demonstrating particular stability

A persistent carbene (also known as stable carbene) is a type of carbene demonstrating particular stability. The best-known examples and by far largest subgroup are the N-heterocyclic carbenes (NHC) (sometimes called Arduengo carbenes), for example diaminocarbenes with the general formula (R2N)2C:, where the four R moieties are typically alkyl and aryl groups. The groups can be linked to give heterocyclic carbenes, such as those derived from imidazole, imidazoline, thiazole or triazole.

The 18-electron rule is a chemical rule of thumb used primarily for predicting and rationalizing formulas for stable transition metal complexes, especially organometallic compounds. The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of one s orbital, three p orbitals, and five d orbitals which can collectively accommodate 18 electrons as either bonding or nonbonding electron pairs. This means that the combination of these nine atomic orbitals with ligand orbitals creates nine molecular orbitals that are either metal-ligand bonding or non-bonding. When a metal complex has 18 valence electrons, it is said to have achieved the same electron configuration as the noble gas in the period. The rule is not helpful for complexes of metals that are not transition metals, and interesting or useful transition metal complexes will violate the rule because of the consequences deviating from the rule bears on reactivity. The rule was first proposed by American chemist Irving Langmuir in 1921.

In chemistry, a (redox) non-innocent ligand is a ligand in a metal complex where the oxidation state is not clear. Typically, complexes containing non-innocent ligands are redox active at mild potentials. The concept assumes that redox reactions in metal complexes are either metal or ligand localized, which is a simplification, albeit a useful one.

Radical (chemistry) Atom, molecule, or ion that has an unpaired valence electron; typically highly reactive

In chemistry, a free radical is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.

In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems. Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal, an anion, another molecule and even another π system. Non-covalent interactions involving π systems are pivotal to biological events such as protein-ligand recognition.

Organocobalt chemistry Chemistry of compounds with a carbon to cobalt bond

Organocobalt chemistry is the chemistry of organometallic compounds containing a carbon to cobalt chemical bond. Organocobalt compounds are involved in several organic reactions and the important biomolecule vitamin B12 has a cobalt-carbon bond. Many organocobalt compounds exhibit useful catalytic properties, the preeminent example being dicobalt octacarbonyl.

Organogold chemistry is the study of compounds containing gold–carbon bonds. They are studied in academic research, but have not received widespread use otherwise. The dominant oxidation states for organogold compounds are I with coordination number 2 and a linear molecular geometry and III with CN = 4 and a square planar molecular geometry. The first organogold compound discovered was gold(I) carbide Au2C2, which was first prepared in 1900.

Catalytic chain transfer (CCT) is a process that can be incorporated into radical polymerization to obtain greater control over the resulting products.

The Buchner ring expansion is a two-step organic C-C bond forming reaction used to access 7-membered rings. The first step involves formation of a carbene from ethyl diazoacetate, which cyclopropanates an aromatic ring. The ring expansion occurs in the second step, with an electrocyclic reaction opening the cyclopropane ring to form the 7-membered ring.

A metal-centered cycloaddition is a subtype of the more general class of cycloaddition reactions. In such reactions "two or more unsaturated molecules unite directly to form a ring", incorporating a metal bonded to one or more of the molecules. Cycloadditions involving metal centers are a staple of organic and organometallic chemistry, and are involved in many industrially-valuable synthetic processes.

Photoredox catalysis

Photoredox catalysis is a branch of photochemistry that uses single-electron transfer. Photoredox catalysts are generally drawn from three classes of materials: transition-metal complexes, organic dyes, and semiconductors. While organic photoredox catalysts were dominant throughout the 1990s and early 2000s, soluble transition-metal complexes are more commonly used today.

Cobalt(II)–porphyrin catalysis is a process in which a Co(II) porphyrin complex acts as a catalyst, inducing and accelerating a chemical reaction.

<i>N</i>-heterocyclic silylene Chemical compound

An N-Heterocyclic Silylene (NHSi) is an uncharged heterocyclic chemical compound consisting of a divalent silicon atom bonded to two nitrogen atoms. The isolation of the first stable NHSi, also the first stable dicoordinate silicon compound, was reported in 1994 by Michael Denk and Robert West three years after Anthony Arduengo first isolated an N-heterocyclic carbene, the lighter congener of NHSis. Since their first isolation, NHSis have been synthesized and studied with both saturated and unsaturated central rings ranging in size from 4 to 6 atoms. The stability of NHSis, especially 6π aromatic unsaturated five-membered examples, make them useful systems to study the structure and reactivity of silylenes and low-valent main group elements in general. Though not used outside of academic settings, complexes containing NHSis are known to be competent catalysts for industrially important reactions. This article focuses on the properties and reactivity of five-membered NHSis.

A Fischer carbene is a divalent organic ligand in an organometallic compound. In a Fischer carbene, the carbene ligand is a σ-donor π-acceptor ligand. Because π-back donation from the metal centre is generally weak, the carbene carbon is electrophilic.

9-Borafluorene

9-borafluorenes are a class of boron-containing heterocycles consisting of a tricyclic system with a central BC4 ring with two fused arene groups. 9-borafluorenes can be thought of as a borole with two fused arene rings, or as a trigonal planar boron atom with an empty p orbital bridging two biphenyl rings. However, 9-borafluorenes are generally less reactive than boroles due to less antiaromatic character and Lewis acidity. Containing highly conjugated π systems, 9-borafluorenes possess interesting photophysical properties. In addition, 9-borafluorenes are good Lewis acids. This combination of properties enables potential uses such as in light-emitting materials, solar cells, and sensors for some molecules.

Intrinsic bond orbitals (IBO) are localized molecular orbitals giving exact and non-empirical representations of wave functions. They are obtained by unitary transformation and form an orthogonal set of orbitals localized on a minimal number of atoms. IBOs present an intuitive and unbiased interpretation of chemical bonding with naturally arising Lewis structures. For this reason IBOs have been successfully employed for the elucidation of molecular structures and electron flow along the intrinsic reaction coordinate (IRC).

References

  1. 1 2 3 4 5 Dzik, W.I.; Zhang, X.P.; de Bruin, B. (2011). "The Redox Non-Innocence of Carbene Ligands: Carbene Radicals in (Catalytic) C-C Bond Formation". Inorganic Chemistry. 50 (20): 9896–9903. doi:10.1021/ic200043a. PMID   21520926.
  2. Ikeno, T.; Iwakura, I.; Yamada, T. (2002). "Cobalt−Carbene Complex with Single-Bond Character: Intermediate for the Cobalt Complex-Catalyzed Cyclopropanation". Journal of the American Chemical Society. 124 (51): 15152–15153. doi:10.1021/ja027713x. PMID   12487572.
  3. Huang, L.; Chen, Y.; Gao, G.-Y.; Zhang, X.P. (2003). "Diastereoselective and enantioselective cyclopropanation of alkenes catalyzed by cobalt porphyrins". Journal of Organic Chemistry. 68 (21): 8179–8184. doi:10.1021/jo035088o. PMID   14535801.
  4. Chirila, A.; Das, B.G.; Paul, N.D.; de Bruin, B. (2017). "Diastereoselective Radical-Type Cyclopropanation of Electron Deficient Alkenes mediated by the Highly Active [Co(MeTAA)] Catalyst". ChemCatChem. 9 (8): 1413–1421. doi:10.1002/cctc.201601568. PMC   5413858 . PMID   28529668.
  5. Das, B.G.; Chirila, A.; Tromp, M.; Reek, J.N.H.; de Bruin, B. (2016). "Co(III)-Carbene Radical Approach to Substituted 1H-Indenes". Journal of the American Chemical Society. 138 (28): 8968–8975. doi:10.1021/jacs.6b05434. PMID   27340837.
  6. Cui, X.; Xu, X.; Jin, L.-M.; Wojtas, L.; Zhang, X.P. (2017). "Stereoselective Radical C–H Alkylation with Acceptor/Acceptor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis". Chemical Science. 6 (2): 1219–1224. doi:10.1039/C4SC02610A. PMC   4324598 . PMID   25685314.
  7. Paul, N.D.; Chirila, A.; Lu, H.; Zhang, X.P.; de Bruin, B. (2013). "Carbene Radicals in Cobalt(II) Porphyrin-Catalysed Carbene Carbonylation Reactions; A Catalytic Approach to Ketenes". Chemistry: A European Journal. 19 (39): 12953–12958. doi:10.1002/chem.201301731. PMC   4351769 . PMID   24038393.
  8. Paul, N.D.; Mandal, S.; Otte, M.; Cui, M.; Zhang, X.P.; de Bruin, B. (2014). "A Metalloradical Approach to 2H-Chromenes". Journal of the American Chemical Society. 136 (3): 1090–1096. doi:10.1021/ja4111336. PMC   3936204 . PMID   24400781.
  9. 1 2 3 Dzik, W.I.; Xu, X.; Zhang, X.P.; Reek, J.N.H.; de Bruin, B. (2010). "'Carbene Radicals' in CoII(por)-Catalyzed Olefin Cyclopropanation". Journal of the American Chemical Society. 132 (31): 10891–10902. doi:10.1021/ja103768r. PMID   20681723.
  10. 1 2 3 4 5 Belof, J.; Cioce, C.; Xu, X.; Zhang, X.P.; Space, B.; Woodcock, H.L. (2011). "Characterization of tunable radical metal–carbenes: Key intermediates in catalytic cyclopropanation". Organometallics. 30 (10): 2739–2746. doi:10.1021/om2001348. PMC   3105361 . PMID   21643517.
  11. Lu, H.; Dzik, W.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X.P. (2011). "Experimental evidence for cobalt(III)-carbene radicals: Key intermediates in cobalt(II)-based metalloradical cyclopropanation". Journal of the American Chemical Society. 133 (22): 8518–8521. doi:10.1021/ja203434c. PMID   21563829.
  12. Russell, S.; Hoyt, J.; Bart, S.; Milsmann, C.; Stieber, S.C.; Semproni, S.; DeBeer, S.; Chirik, P. (2014). "Synthesis, electronic structure and reactivity of bis(imino)pyridine iron carbene complexes: evidence for a carbene radical". Chemical Science. 5 (3): 1168–1174. doi:10.1039/C3SC52450G.
  13. Xu, X.; Zhu, S.; Cui, X.; Wojtas, L.; Zhang, X.P. (2013). "Cobalt(II)-Catalyzed Asymmetric Olefin Cyclopropanation with α-Ketodiazoacetates". Angewandte Chemie International Edition. 52 (45): 11857–11861. doi:10.1002/anie.201305883. PMC   3943748 . PMID   24115575.