Carbene analog

Last updated

Carbene analogs in chemistry are carbenes with the carbon atom replaced by another chemical element. Just as regular carbenes they appear in chemical reactions as reactive intermediates and with special precautions they can be stabilized and isolated as chemical compounds. Carbenes have some practical utility in organic synthesis but carbene analogs are mostly laboratory curiosities only investigated in academia. Carbene analogs are known for elements of group 13, group 14, group 15 and group 16.

Contents

Group 13 carbene analogs

In group 13 elements the boron carbene analog is called a borylene or boranylidene.

Group 14 carbene analogs

The heavier group 14 carbenes are silylenes, R2Si:, germylenes R2Ge: (example diphosphagermylene), stannylenes R2Sn: and plumbylenes R2Pb:, collectively known as metallylenes and regarded as monomers for polymetallanes. [1] The oxidation state for these compounds is +2 and stability increases with principal quantum number (moving down a row in the periodic table). This makes dichloroplumbylene PbCl2 and dichlorostannylene SnCl2 stable ionic compounds although they exist as polymers or ion pairs.

Group 14 carbene analogs do not form hybrid orbitals but instead retain (ns)2(np)2 electron configuration due to the increasing s p gap for larger elements. Two electrons remain in an s-orbital and therefore their compounds have exclusively singlet ground states and not the triplet ground state which can be observed in carbenes depending on the substituents. The s-orbital (lone pair) is inert and the vacant p-orbital is very reactive. Stable group 14 carbenes require stabilization of this p-orbital which is usually accomplished by coordination of a Cp* ligand or coordination to nitrogen, oxygen or phosphorus containing ligands, although stabilization can be achieved through steric protection alone.

General methods for the synthesis of carbon-substituted (aryl or alkyl) metallylenes are reduction of M4+ species or substitution reactions at M2+ halides. Stable metallylenes require bulky substituents in order to prevent nucleophilic attack of the metal center at the p-orbital. Examples of these bulky substituents in R2M: are mesityl, Dis (di(trimethylsilyl)methyl) and adamantyl groups. With insufficient steric shielding the metallylene will form a dimer or a polymer. The first isolable dialkylgermylene was synthesised in 1991: [2]

Me5C5GeCl + LiCH(Si(Me3))2 → Me5C5GeCH(Si(Me3))2
Me5C5GeCH(Si(Me3))2 + LiC(Si(Me3))3 → (SiMe3)3CGeCH(Si(Me3))2

Stable diarylgermylenes also require bulky ligands: [3]

Ge[N(SiMe3)2]2 + 2 LiC5H3(C10H7)2 → Ge[LiC5H3(C10H7)2]2
compoundC-M distance (pm)C-M-C angle (°) Absorbance (nm)
(Ardip)2Ge203.3 204.8113.8608
(Ardip)2Sn225.5117.6600
(Ardip)2Pb239.0 238.0121.5586
Stable Ge, Sn, Pb metallylenes with Ardip = C6H3-2,6-[C6H3-2,6-(C3H7)2]2 [4]

The C-M-C bond angle in metallylenes is less than 120° confirming hybridization other than sp2. The higher p-character for the C-MII bond compared to the C-MIV bond is reflected in its slightly higher bond length.

N-heterocyclic silylenes are known to be stable for months and have been studied extensively.

Group 15 carbene analogs

In the group 15 elements the neutral nitrogen carbene analog (RN) is called a nitrene. The phosphorus analog is a phosphinidene. There are charged group 15 carbene analogs as well, most notably phosphenium ions (R2P+) which are isolobal with (hetero-)carbenes possessing a singlet ground state.

Group 16 carbene analogs

Carbene analogs of group 16 elements have been first reported in 2009. [5] [6] Sulfur, selenium and tellurium dications have been found to be stabilized by the diiminopyridine ligand DIMPY. For example, the reaction product of triflate S(Otf)2 and (2,6-diisopropylphenyl)2DIMPY at -78 °C results in an air-stable dicationic sulfur compound with a naked S2+ atom coordinated by three nitrogen atoms by dative bonds.

Dicationic sulfur Martin 2009.svg

Related Research Articles

An ylide or ylid is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly attached to a heteroatom with a formal positive charge (usually nitrogen, phosphorus or sulfur), and in which both atoms have full octets of electrons. The result can be viewed as a structure in which two adjacent atoms are connected by both a covalent and an ionic bond; normally written X+–Y. Ylides are thus 1,2-dipolar compounds, and a subclass of zwitterions. They appear in organic chemistry as reagents or reactive intermediates.

<span class="mw-page-title-main">Silylene</span> Chemical compound

Silylene is a chemical compound with the formula SiH2. It is the silicon analog of methylene, the simplest carbene. Silylene is a stable molecule as a gas but rapidly reacts in a bimolecular manner when condensed. Unlike carbenes, which can exist in the singlet or triplet state, silylene (and all of its derivatives) are singlets.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

<span class="mw-page-title-main">Disilyne</span> Chemical compound

Disilyne is a silicon hydride with the formula Si
2
H
2
. Several isomers are possible, but none are sufficiently stable to be of practical value. Substituted disilynes contain a formal silicon–silicon triple bond and as such are sometimes written R2Si2 (where R is a substituent group). They are the silicon analogues of alkynes.

<span class="mw-page-title-main">Germylene</span> Class of germanium (II) compounds

Germylenes are a class of germanium(II) compounds with the general formula :GeR2. They are heavier carbene analogs. However, unlike carbenes, whose ground state can be either singlet or triplet depending on the substituents, germylenes have exclusively a singlet ground state. Unprotected carbene analogs, including germylenes, has a dimerization nature. Free germylenes can be isolated under the stabilization of steric hindrance or electron donation. The synthesis of first stable free dialkyl germylene was reported by Jutzi, et al in 1991.

<span class="mw-page-title-main">Phosphinidene</span> Type of compound

Phosphinidenes are low-valent phosphorus compounds analogous to carbenes and nitrenes, having the general structure RP. The "free" form of these compounds is conventionally described as having a singly-coordinated phosphorus atom containing only 6 electrons in its valence level. Most phosphinidenes are highly reactive and short-lived, thereby complicating empirical studies on their chemical properties. In the last few decades, several strategies have been employed to stabilize phosphinidenes, and researchers have developed a number of reagents and systems that can generate and transfer phosphinidenes as reactive intermediates in the synthesis of various organophosphorus compounds.

<span class="mw-page-title-main">Borylene</span>

A borylene is the boron analogue of a carbene. The general structure is R-B: with R an organic moiety and B a boron atom with two unshared electrons. Borylenes are of academic interest in organoboron chemistry. A singlet ground state is predominant with boron having two vacant sp2 orbitals and one doubly occupied one. With just one additional substituent the boron is more electron deficient than the carbon atom in a carbene. For this reason stable borylenes are more uncommon than stable carbenes. Some borylenes such as boron monofluoride (BF) and boron monohydride (BH) the parent compound also known simply as borylene, have been detected in microwave spectroscopy and may exist in stars. Other borylenes exist as reactive intermediates and can only be inferred by chemical trapping.

<span class="mw-page-title-main">Digermyne</span> Class of chemical compounds

Digermynes are a class of compounds that are regarded as the heavier digermanium analogues of alkynes. The parent member of this entire class is HGeGeH, which has only been characterized computationally, but has revealed key features of the whole class. Because of the large interatomic repulsion between two Ge atoms, only kinetically stabilized digermyne molecules can be synthesized and characterized by utilizing bulky protecting groups and appropriate synthetic methods, for example, reductive coupling of germanium(II) halides.

<span class="mw-page-title-main">Decamethylsilicocene</span> Chemical Compound

Decamethylsilicocene, (C5Me5)2Si, is a group 14 sandwich compound. It is an example of a main-group cyclopentadienyl complex; these molecules are related to metallocenes but contain p-block elements as the central atom. It is a colorless, air sensitive solid that sublimes under vacuum.

<span class="mw-page-title-main">Stannylene</span> Class of organotin(II) compounds

Stannylenes (R2Sn:) are a class of organotin(II) compounds that are analogues of carbene. Unlike carbene, which usually has a triplet ground state, stannylenes have a singlet ground state since valence orbitals of tin (Sn) have less tendency to form hybrid orbitals and thus the electrons in 5s orbital are still paired up. Free stannylenes are stabilized by steric protection. Adducts with Lewis bases are also known.

<span class="mw-page-title-main">Diphosphagermylene</span> Class of compounds

Diphosphagermylenes are a class of compounds containing a divalent germanium atom bound to two phosphorus atoms. While these compounds resemble diamidocarbenes, such as N-heterocyclic carbenes (NHC), diphosphagermylenes display bonding characteristics distinct from those of diamidocarbenes. In contrast to NHC compounds, in which there is effective N-C p(π)-p(π) overlap between the lone pairs of planar nitrogens and an empty p-orbital of a carbene, systems containing P-Ge p(π)-p(π) overlap are rare. Until 2014, the geometry of phosphorus atoms in all previously reported diphosphatetrylenes are pyramidal, with minimal P-Ge p(π)-p(π) interaction. It has been suggested that the lack of p(π)-p(π) in Ge-P bonds is due to the high energetic barrier associated with achieving a planar configuration at phosphorus, which would allow for efficient p(π)-p(π) overlap between the phosphorus lone pair and the empty P orbital of Ge. The resulting lack of π stabilization contributes to the difficulty associated with isolating diphosphagermylene and the Ge-P double bonds. However, utilization of sterically encumbering phosphorus centers has allowed for the isolation of diphosphagermylenes with a planar phosphorus center with a significant P-Ge p(π)-p(π) interaction.

<span class="mw-page-title-main">Trisilaallene</span> Class of silicon chemical compounds

Trisilaallene is a subclass of silene derivatives where a central silicon atom forms double bonds with each of two terminal silicon atoms, with the generic formula R2Si=Si=SiR2. Trisilaallene is a silicon-based analog of an allene, but their chemical properties are markedly different.

<span class="mw-page-title-main">Silylone</span> Class of organosilicon compounds

Silylones are a class of zero-valent monatomic silicon complexes, characterized as having two lone pairs and two donor-acceptor ligand interactions stabilizing a silicon(0) center. Synthesis of silylones generally involves the use of sterically bulky carbenes to stabilize highly reactive Si(0) centers. For this reason, silylones are sometimes referred to siladicarbenes. To date, silylones have been synthesized with cyclic alkyl amino carbenes (cAAC) and bidentate N-heterocyclic carbenes (bis-NHC). They are capable of reactions with a variety of substrates, including chalcogens and carbon dioxide.

<span class="mw-page-title-main">Phosphasilene</span>

Phosphasilenes or silylidenephosphanes are a class of compounds with silicon-phosphorus double bonds. Since the electronegativity of phosphorus (2.1) is higher than that of silicon (1.9), the "Si=P" moiety of phosphasilene is polarized. The degree of polarization can be tuned by altering the coordination numbers of the Si and P centers, or by modifying the electronic properties of the substituents. The phosphasilene Si=P double bond is highly reactive, yet with the choice of proper substituents, it can be stabilized via donor-acceptor interaction or by steric congestion.

<i>N</i>-heterocyclic silylene Chemical compound

An N-Heterocyclic silylene (NHSi) is an uncharged heterocyclic chemical compound consisting of a divalent silicon atom bonded to two nitrogen atoms. The isolation of the first stable NHSi, also the first stable dicoordinate silicon compound, was reported in 1994 by Michael Denk and Robert West three years after Anthony Arduengo first isolated an N-heterocyclic carbene, the lighter congener of NHSis. Since their first isolation, NHSis have been synthesized and studied with both saturated and unsaturated central rings ranging in size from 4 to 6 atoms. The stability of NHSis, especially 6π aromatic unsaturated five-membered examples, make them useful systems to study the structure and reactivity of silylenes and low-valent main group elements in general. Though not used outside of academic settings, complexes containing NHSis are known to be competent catalysts for industrially important reactions. This article focuses on the properties and reactivity of five-membered NHSis.

<span class="mw-page-title-main">Plumbylene</span> Divalent organolead(II) analogues of carbenes

Plumbylenes (or plumbylidenes) are divalent organolead(II) analogues of carbenes, with the general chemical formula, R2Pb, where R denotes a substituent. Plumbylenes possess 6 electrons in their valence shell, and are considered open shell species.

Dispersion stabilized molecules are molecules where the London dispersion force (LDF), a non-covalent attractive force between atoms and molecules, plays a significant role in promoting the molecule's stability. Distinct from steric hindrance, dispersion stabilization has only recently been considered in depth by organic and inorganic chemists after earlier gaining prominence in protein science and supramolecular chemistry. Although usually weaker than covalent bonding and other forms of non-covalent interactions like hydrogen bonding, dispersion forces are known to be a significant if not dominating stabilizing force in certain organic, inorganic, and main group molecules, stabilizing otherwise reactive moieties and exotic bonding.

<span class="mw-page-title-main">Bismuthinidene</span> Class of organobismuth compounds

Bismuthinidenes are a class of organobismuth compounds, analogous to carbenes. These compounds have the general form R-Bi, with two lone pairs of electrons on the central bismuth(I) atom. Due to the unusually low valency and oxidation state of +1, most bismuthinidenes are reactive and unstable, though in recent decades, both transition metals and polydentate chelating Lewis base ligands have been employed to stabilize the low-valent bismuth(I) center through steric protection and π donation either in solution or in crystal structures. Lewis base-stabilized bismuthinidenes adopt a singlet ground state with an inert lone pair of electrons in the 6s orbital. A second lone pair in a 6p orbital and a single empty 6p orbital make Lewis base-stabilized bismuthinidenes ambiphilic.

<span class="mw-page-title-main">Stable phosphorus radicals</span>

Stable and persistent phosphorus radicals are phosphorus-centred radicals that are isolable and can exist for at least short periods of time. Radicals consisting of main group elements are often very reactive and undergo uncontrollable reactions, notably dimerization and polymerization. The common strategies for stabilising these phosphorus radicals usually include the delocalisation of the unpaired electron over a pi system or nearby electronegative atoms, and kinetic stabilisation with bulky ligands. Stable and persistent phosphorus radicals can be classified into three categories: neutral, cationic, and anionic radicals. Each of these classes involve various sub-classes, with neutral phosphorus radicals being the most extensively studied. Phosphorus exists as one isotope 31P (I = 1/2) with large hyperfine couplings relative to other spin active nuclei, making phosphorus radicals particularly attractive for spin-labelling experiments.

References

  1. Stable Heavier Carbene Analogues Yoshiyuki Mizuhata, Takahiro Sasamori, and Norihiro Tokitoh Chem. Rev. 2009, 109, 3479–3511 doi : 10.1021/cr900093s
  2. Synthesis and solid-state structure of (Me3Si)3CGeCH(SiMe3)2, a monomeric dialkylgermylene P. Jutzi, A. Becker, H. G. Stammler, B. Neumann Organometallics, 1991, 10 (6), pp 1647–1648 doi : 10.1021/om00052a002
  3. Ligand-Protected Strain-Free Diarylgermylenes Gerald L. Wegner, Raphael J. F. Berger, Annette Schier, and Hubert Schmidbaur Organometallics, 2001, 20 (3), pp 418–423 doi : 10.1021/om000743t
  4. Synthesis and Characterization of the Monomeric Sterically Encumbered Diaryls E{C6H3-2,6-(C6H3-2,6-Pri2)2}2 (E = Ge, Sn, or Pb) Geoffrey H. Spikes, Yang Peng, James C. Fettinger, Philip P. Power, Davis Zeitschrift für anorganische und allgemeine Chemie Volume 632 Issue 6, Pages 1005 - 1010 2006 doi : 10.1002/zaac.200500532
  5. Remarkably Stable Chalcogen(II) Dications Caleb D. Martin, Christine M. Le, and Paul J. Ragogna J. Am. Chem. Soc., Article ASAP 2009 doi : 10.1021/ja9073968
  6. Reactive Dications Tamed Main-Group Chemistry: Stabilizing positive charge with three nitrogen atoms yields stable group 16 complexes Steve Ritter Chemical & Engineering News October 12, 2009 Volume 87, Number 41 pp. 12 - 12 Link