In mathematics, Cartan's equivalence method is a technique in differential geometry for determining whether two geometrical structures are the same up to a diffeomorphism. For example, if M and N are two Riemannian manifolds with metrics g and h, respectively, when is there a diffeomorphism
Mathematics includes the study of such topics as quantity, structure, space, and change.
Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are smooth.
such that
Although the answer to this particular question was known in dimension 2 to Gauss and in higher dimensions to Christoffel and perhaps Riemann as well, Élie Cartan and his intellectual heirs developed a technique for answering similar questions for radically different geometric structures. (For example see the Cartan–Karlhede algorithm.)
Johann Carl Friedrich Gauss (; German: Gauß[ˈkaɐ̯l ˈfʁiːdʁɪç ˈɡaʊs]; Latin: Carolus Fridericus Gauss; was a German mathematician and physicist who made significant contributions to many fields in mathematics and sciences. Sometimes referred to as the Princeps mathematicorum and "the greatest mathematician since antiquity", Gauss had an exceptional influence in many fields of mathematics and science, and is ranked among history's most influential mathematicians.
Elwin Bruno Christoffel was a German mathematician and physicist. He introduced fundamental concepts of differential geometry, opening the way for the development of tensor calculus, which would later provide the mathematical basis for general relativity.
Élie Joseph Cartan, ForMemRS was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems, and differential geometry. He also made significant contributions to general relativity and indirectly to quantum mechanics. He is widely regarded as one of the greatest mathematicians of the twentieth century.
Cartan successfully applied his equivalence method to many such structures, including projective structures, CR structures, and complex structures, as well as ostensibly non-geometrical structures such as the equivalence of Lagrangians and ordinary differential equations. (His techniques were later developed more fully by many others, such as D. C. Spencer and Shiing-Shen Chern.)
In differential geometry, a complex manifold is a manifold with an atlas of charts to the open unit disk in Cn, such that the transition maps are holomorphic.
Lagrangian mechanics is a reformulation of classical mechanics, introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in 1788.
In mathematics, an ordinary differential equation (ODE) is a differential equation containing one or more functions of one independent variable and the derivatives of those functions. The term ordinary is used in contrast with the term partial differential equation which may be with respect to more than one independent variable.
The equivalence method is an essentially algorithmic procedure for determining when two geometric structures are identical. For Cartan, the primary geometrical information was expressed in a coframe or collection of coframes on a differentiable manifold. See method of moving frames.
In mathematics and computer science, an algorithm is an unambiguous specification of how to solve a class of problems. Algorithms can perform calculation, data processing, automated reasoning, and other tasks.
In mathematics, a coframe or coframe field on a smooth manifold is a system of one-forms or covectors which form a basis of the cotangent bundle at every point. In the exterior algebra of , one has a natural map from , given by . If is dimensional a coframe is given by a section of such that . The inverse image under of the complement of the zero section of forms a principal bundle over , which is called the coframe bundle.
In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.
Specifically, suppose that M and N are a pair of manifolds each carrying a G-structure for a structure group G. This amounts to giving a special class of coframes on M and N. Cartan's method addresses the question of whether there exists a local diffeomorphism φ:M→N under which the G-structure on N pulls back to the given G-structure on M. An equivalence problem has been "solved" if one can give a complete set of structural invariants for the G-structure: meaning that such a diffeomorphism exists if and only if all of the structural invariants agree in a suitably defined sense.
Explicitly, local systems of one-forms θi and γi are given on M and N, respectively, which span the respective cotangent bundles (i.e., are coframes). The question is whether there is a local diffeomorphism φ:M→N such that the pullback of the coframe on N satisfies
Suppose that φ:M→ N is a smooth map between smooth manifolds M and N; then there is an associated linear map from the space of 1-forms on N to the space of 1-forms on M. This linear map is known as the pullback, and is frequently denoted by φ*. More generally, any covariant tensor field – in particular any differential form – on N may be pulled back to M using φ.
where the coefficient g is a function on M taking values in the Lie group G. For example, if M and N are Riemannian manifolds, then G=O(n) is the orthogonal group and θi and γi are orthonormal coframes of M and N respectively. The question of whether two Riemannian manifolds are isometric is then a question of whether there exists a diffeomorphism φ satisfying (1).
The first step in the Cartan method is to express the pullback relation (1) in as invariant a way as possible through the use of a "prolongation". The most economical way to do this is to use a G-subbundle PM of the principal bundle of linear coframes LM, although this approach can lead to unnecessary complications when performing actual calculations. In particular, later on this article uses a different approach. But for the purposes of an overview, it is convenient to stick with the principal bundle viewpoint.
The second step is to use the diffeomorphism invariance of the exterior derivative to try to isolate any other higher-order invariants of the G-structure. Basically one obtains a connection in the principal bundle PM, with some torsion. The components of the connection and of the torsion are regarded as invariants of the problem.
The third step is that if the remaining torsion coefficients are not constant in the fibres of the principal bundle PM, it is often possible (although sometimes difficult), to normalize them by setting them equal to a convenient constant value and solving these normalization equations, thereby reducing the effective dimension of the Lie group G. If this occurs, one goes back to step one, now having a Lie group of one lower dimension to work with.
The main purpose of the first three steps was to reduce the structure group itself as much as possible. Suppose that the equivalence problem has been through the loop enough times that no further reduction is possible. At this point, there are various possible directions in which the equivalence method leads. For most equivalence problems, there are only four cases: complete reduction, involution, prolongation, and degeneracy.
Complete reduction. Here the structure group has been reduced completely to the trivial group. The problem can now be handled by methods such as the Frobenius theorem. In other words, the algorithm has successfully terminated.
On the other hand, it is possible that the torsion coefficients are constant on the fibres of PM. Equivalently, they no longer depend on the Lie group G because there is nothing left to normalize, although there may still be some torsion. The three remaining cases assume this.
Involution. The equivalence problem is said to be involutive (or in involution) if it passes Cartan's test. This is essentially a rank condition on the connection obtained in the first three steps of the procedure. The Cartan test generalizes the Frobenius theorem on the solubility of first-order linear systems of partial differential equations. If the coframes on M and N (obtained by a thorough application of the first three steps of the algorithm) agree and satisfy the Cartan test, then the two G-structures are equivalent. (Actually, to the best of the author's knowledge, the coframes must be real analytic in order for this to hold, because the Cartan-Kähler theorem requires analyticity.)
Prolongation. This is the most intricate case. In fact there are two sub-cases. In the first sub-case, all of the torsion can be uniquely absorbed into the connection form. (Riemannian manifolds are an example, since the Levi-Civita connection absorbs all of the torsion). The connection coefficients and their invariant derivatives form a complete set of invariants of the structure, and the equivalence problem is solved. In the second subcase, however, it is either impossible to absorb all of the torsion, or there is some ambiguity (as is often the case in Gaussian elimination, for example). Here, just as in Gaussian elimination, there are additional parameters which appear in attempting to absorb the torsion. These parameters themselves turn out to be additional invariants of the problem, so the structure group G must be prolonged into a subgroup of a jet group. Once this is done, one obtains a new coframe on the prolonged space and has to return to the first step of the equivalence method. (See also prolongation of G-structures.)
Degeneracy. Because of a non-uniformity of some rank condition, the equivalence method is unsuccessful in handling this particular equivalence problem. For example, consider the equivalence problem of mapping a manifold M with a single one-form θ to another manifold with a single one-form γ such that φ*γ=θ. The zeros of these one forms, as well as the rank of their exterior derivatives at each point need to be taken into account. The equivalence method can handle such problems if all of the ranks are uniform, but it is not always suitable if the rank changes. Of course, depending on the particular application, a great deal of information can still be obtained with the equivalence method.
In mathematics, differential topology is the field dealing with differentiable functions on differentiable manifolds. It is closely related to differential geometry and together they make up the geometric theory of differentiable manifolds.
In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.
In mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry of smooth manifolds embedded in a homogeneous space.
In the branch of mathematics called differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. The notion of an affine connection has its roots in 19th-century geometry and tensor calculus, but was not fully developed until the early 1920s, by Élie Cartan and Hermann Weyl. The terminology is due to Cartan and has its origins in the identification of tangent spaces in Euclidean space Rn by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space.
In mathematics, the Maurer–Cartan form for a Lie group G is a distinguished differential one-form on G that carries the basic infinitesimal information about the structure of G. It was much used by Élie Cartan as a basic ingredient of his method of moving frames, and bears his name together with that of Ludwig Maurer.
In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of the way a differential form restricts to a submanifold, and the fact that this restriction is compatible with the exterior derivative. This is one possible approach to certain over-determined systems, for example, including Lax pairs of integrable systems. A Pfaffian system is specified by 1-forms alone, but the theory includes other types of example of differential system.
In differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a G-subbundle of the tangent frame bundle FM of M.
In differential geometry, representation theory and harmonic analysis, a symmetric space is a pseudo-Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be made more precise, in either the language of Riemannian geometry or of Lie theory. The Riemannian definition is more geometric, and plays a deep role in the theory of holonomy. The Lie-theoretic definition is more algebraic.
The Cartan–Karlhede algorithm is a procedure for completely classifying and comparing Riemannian manifolds. Given two Riemannian manifolds of the same dimension, it is not always obvious whether they are locally isometric. Élie Cartan, using his exterior calculus with his method of moving frames, showed that it is always possible to compare the manifolds. Carl Brans developed the method further, and the first practical implementation was presented by Anders Karlhede in 1980.
In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves. In the geometry of surfaces, the geodesic torsion describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting".
In mathematics and theoretical physics, an invariant differential operator is a kind of mathematical map from some objects to an object of similar type. These objects are typically functions on , functions on a manifold, vector valued functions, vector fields, or, more generally, sections of a vector bundle.
In differential geometry, an affine manifold is a differentiable manifold equipped with a flat, torsion-free connection.
In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.
In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity. It should not be confused with gauge theory gravity, which is a formulation of (classical) gravitation in the language of geometric algebra. Nor should it be confused with Kaluza–Klein theory, where the gauge fields are used to describe particle fields, and not gravity itself.
In mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X, a normal map on X endows the space, roughly speaking, with some of the homotopy-theoretic global structure of a closed manifold. In particular, X has a good candidate for a stable normal bundle and a Thom collapse map, which is equivalent to there being a map from a manifold M to X matching the fundamental classes and preserving normal bundle information. If the dimension of X is 5 there is then only the algebraic topology surgery obstruction due to C. T. C. Wall to X actually being homotopy equivalent to a closed manifold. Normal maps also apply to the study of the uniqueness of manifold structures within a homotopy type, which was pioneered by Sergei Novikov.
In geometry, if X is a manifold with an action of a topological group G by analytical diffeomorphisms, the notion of a (G, X)-structure on a topological space is a way to formalise it being locally isomorphic to X with its G-invariant structure; spaces with a -structures are always manifolds and are called (G, X)-manifolds. This notion is often used with G being a Lie group and X a homogeneous space for G. Foundational examples are hyperbolic manifolds and affine manifolds.