Carter subgroup

Last updated

In mathematics, especially in the field of group theory, a Carter subgroup of a finite group G is a self-normalizing subgroup of G that is nilpotent. These subgroups were introduced by Roger Carter, and marked the beginning of the post 1960 theory of solvable groups ( Wehrfritz 1999 ).

Carter (1961) proved that any finite solvable group has a Carter subgroup, and all its Carter subgroups are conjugate subgroups (and therefore isomorphic). If a group is not solvable it need not have any Carter subgroups: for example, the alternating group A5 of order 60 has no Carter subgroups. Vdovin ( 2006 , 2007 ) showed that even if a finite group is not solvable then any two Carter subgroups are conjugate.

A Carter subgroup is a maximal nilpotent subgroup, because of the normalizer condition for nilpotent groups, but not all maximal nilpotent subgroups are Carter subgroups ( Ballester-Bolinches & Ezquerro 2006 , p. 100). For example, any non-identity proper subgroup of the nonabelian group of order six is a maximal nilpotent subgroup, but only those of order two are Carter subgroups. Every subgroup containing a Carter subgroup of a soluble group is also self-normalizing, and a soluble group is generated by any Carter subgroup and its nilpotent residual ( Schenkman 1975 , VII.4.a).

Gaschütz (1962) viewed the Carter subgroups as analogues of Sylow subgroups and Hall subgroups, and unified their treatment with the theory of formations. In the language of formations, a Sylow p-subgroup is a covering group for the formation of p-groups, a Hall π-subgroup is a covering group for the formation of π-groups, and a Carter subgroup is a covering group for the formation of nilpotent groups ( Ballester-Bolinches & Ezquerro 2006 , p. 100). Together with an important generalization, Schunck classes, and an important dualization, Fischer classes, formations formed the major research themes of the late 20th century in the theory of finite soluble groups.

A dual notion to Carter subgroups was introduced by Bernd Fischer in ( Fischer 1966 ). A Fischer subgroup of a group is a nilpotent subgroup containing every other nilpotent subgroup it normalizes. A Fischer subgroup is a maximal nilpotent subgroup, but not every maximal nilpotent subgroup is a Fischer subgroup: again the nonabelian group of order six provides an example as every non-identity proper subgroup is a maximal nilpotent subgroup, but only the subgroup of order three is a Fischer subgroup ( Wehrfritz 1999 , p. 98).

See also

Related Research Articles

<span class="mw-page-title-main">Monster group</span> Finite simple group

In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order
   246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
   = 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000
   ≈ 8×1053.

<span class="mw-page-title-main">Sylow theorems</span> Theorems that help decompose a finite group based on prime factors of its order

In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups.

<span class="mw-page-title-main">Nilpotent group</span> Group that has an upper central series terminating with G

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}.

In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the p-core of a group.

<span class="mw-page-title-main">Schur multiplier</span>

In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group of a group G. It was introduced by Issai Schur (1904) in his work on projective representations.

In mathematics, especially in the area of algebra known as group theory, the Fitting subgroupF of a finite group G, named after Hans Fitting, is the unique largest normal nilpotent subgroup of G. Intuitively, it represents the smallest subgroup which "controls" the structure of G when G is solvable. When G is not solvable, a similar role is played by the generalized Fitting subgroupF*, which is generated by the Fitting subgroup and the components of G.

In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.

<span class="mw-page-title-main">Frobenius group</span>

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

<span class="mw-page-title-main">Hall subgroup</span>

In mathematics, specifically group theory, a Hall subgroup of a finite group G is a subgroup whose order is coprime to its index. They were introduced by the group theorist Philip Hall (1928).

In mathematics, in the area of abstract algebra known as group theory, an A-group is a type of group that is similar to abelian groups. The groups were first studied in the 1940s by Philip Hall, and are still studied today. A great deal is known about their structure.

In mathematics, in the field of group theory, a locally finite group is a type of group that can be studied in ways analogous to a finite group. Sylow subgroups, Carter subgroups, and abelian subgroups of locally finite groups have been studied. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov.

The Schur–Zassenhaus theorem is a theorem in group theory which states that if is a finite group, and is a normal subgroup whose order is coprime to the order of the quotient group , then is a semidirect product of and . An alternative statement of the theorem is that any normal Hall subgroup of a finite group has a complement in . Moreover if either or is solvable then the Schur–Zassenhaus theorem also states that all complements of in are conjugate. The assumption that either or is solvable can be dropped as it is always satisfied, but all known proofs of this require the use of the much harder Feit–Thompson theorem.

In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings, it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal.

In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups:

In mathematics, a group is called an Iwasawa group, M-group or modular group if its lattice of subgroups is modular. Alternatively, a group G is called an Iwasawa group when every subgroup of G is permutable in G.

In mathematical group theory, a normal p-complement of a finite group for a prime p is a normal subgroup of order coprime to p and index a power of p. In other words the group is a semidirect product of the normal p-complement and any Sylow p-subgroup. A group is called p-nilpotent if it has a normal p-complement.

In mathematics, especially in the study of infinite groups, the Hirsch–Plotkin radical is a subgroup describing the normal locally nilpotent subgroups of the group. It was named by Gruenberg (1961) after Kurt Hirsch and Boris I. Plotkin, who proved that the join of normal locally nilpotent subgroups is locally nilpotent; this fact is the key ingredient in its construction.

In mathematics, the term cosocle has several related meanings.

In group theory, a branch of mathematics, a formation is a class of groups closed under taking images and such that if G/M and G/N are in the formation then so is G/MN. Gaschütz (1962) introduced formations to unify the theory of Hall subgroups and Carter subgroups of finite solvable groups.

In mathematical finite group theory, the Thompson transitivity theorem gives conditions under which the centralizer of an abelian subgroup A acts transitively on certain subgroups normalized by A. It originated in the proof of the odd order theorem by Feit and Thompson (1963), where it was used to prove the Thompson uniqueness theorem.

References