Catalytic oxidation

Last updated

Catalytic oxidation are processes that rely on catalysts to introduce oxygen into organic and inorganic compounds. Many applications, including the focus of this article, involve oxidation by oxygen. Such processes are conducted on a large scale for the remediation of pollutants, production of valuable chemicals, and the production of energy. [1]

Contents

Oxidations of organic compounds

Carboxylic acids, ketones, epoxides, and alcohols are often obtained by partial oxidation of alkanes and alkenes with dioxygen. These intermediates are essential to the production of consumer goods. Partial oxidation is challenging because the most favored reaction between oxygen and hydrocarbons is combustion.

Oxidations of inorganic compounds

Sulfuric acid is produced from sulfur trioxide which is obtained by oxidation of sulfur dioxide. Food-grade phosphates are generated via oxidation of white phosphorus. Carbon monoxide in automobile exhaust is converted to carbon dioxide in catalytic converters.

Examples

Industrially important examples include both inorganic and organic substrates.

SubstrateProcessCatalystProductApplication
sulfur dioxide contact process vanadium pentoxide
(heterogeneous)
sulfuric acid fertilizer production
ammonia Ostwald process platinum
(heterogeneous)
nitric acid basic chemicals, TNT
hydrogen sulfide Claus process vanadium pentoxide
(heterogeneous)
sulfur remediation of byproduct of
oil refinery
methane,
ammonia
Andrussow process platinum
(heterogeneous)
hydrogen cyanide basic chemicals, gold mining extractant
ethylene epoxidation mixed Ag oxides
(heterogeneous)
ethylene oxide basic chemicals, surfactants
cyclohexane K-A processCo and Mn salts
(homogeneous)
cyclohexanol
cyclohexanone
nylon precursor
ethylene Wacker process Pd and Cu salts
(homogeneous)
acetaldehyde basic chemicals
para-xylene terephthalic acid synthesisMn and Co salts
(homogeneous)
terephthalic acid plastic precursor
propylene allylic oxidation Mo-oxides
(heterogeneous)
acrylic acid plastic precursor
propylene,
ammonia
SOHIO process Bi-Mo-oxides
(heterogeneous)
acrylonitrile plastic precursor
methanol Formox process Fe-Mo-oxides
(heterogeneous)
formaldehyde basic chemicals, alkyd resins
butane Maleic anhydride processvanadium phosphates
(heterogeneous)
maleic anhydride plastics, alkyd resins

Catalysts

Oxidation catalysis is conducted by both heterogeneous catalysis and homogeneous catalysis. In the heterogeneous processes, gaseous substrate and oxygen (or air) are passed over solid catalysts. Typical catalysts are platinum, and redox-active oxides of iron, vanadium, and molybdenum. In many cases, catalysts are modified with a host of additives or promoters that enhance rates or selectivities.

Important homogeneous catalysts for the oxidation of organic compounds are carboxylates of cobalt, iron, and manganese. To confer good solubility in the organic solvent, these catalysts are often derived from naphthenic acids and ethylhexanoic acid, which are highly lipophilic. These catalysts initiate radical chain reactions, autoxidation that produce organic radicals that combine with oxygen to give hydroperoxide intermediates. Generally the selectivity of oxidation is determined by bond energies. For example, benzylic C-H bonds are replaced by oxygen faster than aromatic C-H bonds. [2]

Fine chemicals

Many selective oxidation catalysts have been developed for producing fine chemicals of pharmaceutical or academic interest. Nobel Prize–winning examples are the Sharpless epoxidation and the Sharpless dihydroxylation.

Biological catalysis

Catalytic oxidations are common in biology, especially since aerobic life subsists on energy obtained by oxidation of organic compounds by air. In contrast to the industrial processes, which are optimized for producing chemical compounds, energy-producing biological oxidations are optimized to produce energy. Many metalloenzymes mediate these reactions.

Fuel cells, etc

Fuel cells rely on oxidation of organic compounds (or hydrogen) using catalysts. Catalytic heaters generate flameless heat from a supply of combustible fuel and oxygen from air as oxidant.

Challenges

The foremost challenge in catalytic oxidation is the conversion of methane to methanol. Most methane is stranded, i.e. not located near metropolitan areas. Consequently, it is flared (converted to carbon dioxide). One challenge is that methanol is more easily oxidized than is methane. [3]

Catalytic oxidation with oxygen or air is a major application of green chemistry. There are however many oxidations that cannot be achieved so straightforwardly. The conversion of propylene to propylene oxide is typically effected using hydrogen peroxide, not oxygen or air.

Related Research Articles

<span class="mw-page-title-main">Catalysis</span> Process of increasing the rate of a chemical reaction

Catalysis is the increase in rate of a chemical reaction due to an added substance known as a catalyst. Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process of regenerating the catalyst.

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

<span class="mw-page-title-main">Haber process</span> Main process of ammonia production

The Haber process, also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. The German chemists Fritz Haber and Carl Bosch developed it in the first decade of the 20th century. The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using an iron metal catalyst under high temperatures and pressures. This reaction is slightly exothermic (i.e. it releases energy), meaning that the reaction is favoured at lower temperatures and higher pressures. It decreases entropy, complicating the process. Hydrogen is produced via steam reforming, followed by an iterative closed cycle to react hydrogen with nitrogen to produce ammonia.

<span class="mw-page-title-main">Methanol</span> CH3OH; simplest alcohol

Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula CH3OH (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a light, volatile, colorless and flammable liquid with a distinctive alcoholic odour similar to that of ethanol (potable alcohol). Methanol acquired the name wood alcohol because it was once produced chiefly by the destructive distillation of wood. Today, methanol is mainly produced industrially by hydrogenation of carbon monoxide.

<span class="mw-page-title-main">Hydrogenation</span> Chemical reaction between molecular hydrogen and another compound or element

Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

Propylene, also known as propene, is an unsaturated organic compound with the chemical formula CH3CH=CH2. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petroleum-like odor.

In chemistry, dehydrogenation is a chemical reaction that involves the removal of hydrogen, usually from an organic molecule. It is the reverse of hydrogenation. Dehydrogenation is important, both as a useful reaction and a serious problem. At its simplest, it's a useful way of converting alkanes, which are relatively inert and thus low-valued, to olefins, which are reactive and thus more valuable. Alkenes are precursors to aldehydes, alcohols, polymers, and aromatics. As a problematic reaction, the fouling and inactivation of many catalysts arises via coking, which is the dehydrogenative polymerization of organic substrates.

<span class="mw-page-title-main">Steam reforming</span> Method for producing hydrogen and carbon monoxide from hydrocarbon fuels

Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is hydrogen production. The reaction is represented by this equilibrium:

<span class="mw-page-title-main">Heterogeneous catalysis</span> Type of catalysis involving reactants & catalysts in different phases of matter

Heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. Phase distinguishes between not only solid, liquid, and gas components, but also immiscible mixtures, or anywhere an interface is present.

In chemistry, homogeneous catalysis is catalysis where the catalyst is in same phase as reactants, principally by a soluble catalyst a in solution. In contrast, heterogeneous catalysis describes processes where the catalysts and substrate are in distinct phases, typically solid-gas, respectively. The term is used almost exclusively to describe solutions and implies catalysis by organometallic compounds. Homogeneous catalysis is an established technology that continues to evolve. An illustrative major application is the production of acetic acid. Enzymes are examples of homogeneous catalysts.

<span class="mw-page-title-main">Carbonate ester</span> Chemical group (R–O–C(=O)–O–R)

In organic chemistry, a carbonate ester is an ester of carbonic acid. This functional group consists of a carbonyl group flanked by two alkoxy groups. The general structure of these carbonates is R−O−C(=O)−O−R' and they are related to esters, ethers and also to the inorganic carbonates.

Wet oxidation is a form of hydrothermal treatment. It is the oxidation of dissolved or suspended components in water using oxygen as the oxidizer. It is referred to as "Wet Air Oxidation" (WAO) when air is used. The oxidation reactions occur in superheated water at a temperature above the normal boiling point of water (100 °C), but below the critical point (374 °C).

In organometallic chemistry, a migratory insertion is a type of reaction wherein two ligands on a metal complex combine. It is a subset of reactions that very closely resembles the insertion reactions, and both are differentiated by the mechanism that leads to the resulting stereochemistry of the products. However, often the two are used interchangeably because the mechanism is sometimes unknown. Therefore, migratory insertion reactions or insertion reactions, for short, are defined not by the mechanism but by the overall regiochemistry wherein one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

<span class="mw-page-title-main">Electrocatalyst</span> Catalyst participating in electrochemical reactions

An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be heterogeneous such as a platinized electrode. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall half reaction. Major challenges in electrocatalysts focus on fuel cells.

The oxidative coupling of methane (OCM) is a potential chemical reaction studied in the 1980s for the direct conversion of natural gas, primarily consisting of methane, into value-added chemicals. Although the reaction would have strong economics if practicable, no effective catalysts are known, and thermodynamic arguments suggest none can exist.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

The first time a catalyst was used in the industry was in 1746 by J. Roebuck in the manufacture of lead chamber sulfuric acid. Since then catalysts have been in use in a large portion of the chemical industry. In the start only pure components were used as catalysts, but after the year 1900 multicomponent catalysts were studied and are now commonly used in the industry.

<span class="mw-page-title-main">Scripps Energy & Materials Center</span>

The Scripps Energy & Materials Center (SEMC) is an American research center that focuses on research in the basic energy and materials sciences. Located in Jupiter, Florida, the center has scientists, graduate students, and administrative staff. The SEMC is a part of the Scripps Research Institute (TSRI), one of the largest non-profit research institutes in the world.

Methane functionalization is the process of converting methane in its gaseous state to another molecule with a functional group, typically methanol or acetic acid, through the use of transition metal catalysts.

References

  1. Gerhard Franz, Roger A. Sheldon "Oxidation" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000 doi : 10.1002/14356007.a18_261
  2. Mario G. Clerici, Marco Ricci and Giorgio Strukul "Formation of C–O Bonds by Oxidation" in Metal-catalysis in Industrial Organic Processes Gian Paolo Chiusoli, Peter M Maitlis, Eds. 2006, RSC. ISBN   978-0-85404-862-5.
  3. Cavani, Fabrizio; Teles, Joaquim Henrique (2009). "Sustainability in Catalytic Oxidation: An Alternative Approach or a Structural Evolution?". ChemSusChem. 2 (6): 508–534. doi:10.1002/cssc.200900020. PMID   19536755.