The central sterile services department (CSSD), also called sterile processing department (SPD), sterile processing, central supply department (CSD), or central supply, is an integrated place in hospitals and other health care facilities that performs sterilization and other actions on medical devices, equipment and consumables; for subsequent use by health workers in the operating theatre of the hospital and also for other aseptic procedures, e.g. catheterization, wound stitching and bandaging in a medical, surgical, maternity or paediatric ward. [1]
The operations of a sterile services department usually consist of the cleaning, disinfection, and sterilization of reusable medical equipment. Reusable medical equipment, or RME, can consist of any medical equipment from stainless steel surgical instrumentation, to IV pumps and crash carts. RME is separated into three classes: non-critical, semi-critical, and critical, with each class requiring a minimum level of reprocessing. [2]
Non-critical items, such as IV poles and pumps, require a minimum of intermediate level disinfection which can be accomplished with most hospital disinfectants. [2]
Semi-critical items are items that are expected to have contact with what an intact mucous membrane, and normally consists of endoscopes like those used in colonoscopies. These items require high level disinfectants such as glutaraldehyde solution, peracetic acid, or hydrogen peroxide plasma. [2]
Critical items, which include any instrument which will be introduced into a patient blood stream or in a normally sterile area of the body, require sterilization. [2]
Sterilization is the process of destroying all living organisms on an item and is the main task of most sterile services departments. Items to be sterilized must first be cleaned in a separate decontamination room and inspected for effectiveness, cleanliness and damage. There are multiple methods of sterilization, and which one is used is dependent on many factors including: operational cost, potential hazards to workers, efficacy, time, and composition of the materials being sterilized.[ citation needed ]
In the US, one of the cheapest and easiest methods is steam sterilization, where instrumentation trays and packages are placed in a chamber which is them filled with 250–270 °F (121–132 °C) steam, killing all microorganisms. [3]
Sterilization can also be achieved using ethylene oxide (ETO) gas. This process was created in the 1950s by the US military [4] and is used on items that cannot withstand the high temperatures of steam sterilization. ETO sterilization takes far longer than steam sterilization and is hazardous to workers, so alternative methods were created in the 1990s. The most common method for sterilizing at low temperatures today is by using hydrogen peroxide plasma, which has near zero risk to workers and cycles take a fraction of the time of ETO sterilization.[ citation needed ]
Depending on the healthcare facility's policy, there will be either an event related or time related sterile storage policy. If the policy is time related, an expiration date is placed on the sterile package, before being supplied to the end-user as a sterile product. If along the supply route, the sealed package got damaged or opened by a health worker, it needs to be returned to the CSSD for re-sterilization. If the healthcare facility's policy is event related, the package is considered sterile until an event occurs to compromise its sterility (e.g. opened, dropped package, high humidity conditions, etc.)[ citation needed ]
Decontamination is the most important step in the sterilization process beginning with point of use cleaning in the operating room. Items must be cleaned according to the manufacturer's instructions for use (IFU's). These must be followed for each item processed. Failure to properly clean a device will prevent sterilization from occurring. There are several factors that contribute to having a properly functioning decontamination area: [1] there must be proper dilution of detergents or damage to instruments will occur to include rusting and discoloration, [2] lumens are a big issue so there must be an assortment of brushes with varying lengths and diameters to thoroughly clean inside lumened instruments, [3] SPD staff need to be competent in the use of all processing equipment, [4] monthly in-service should be recurring and completed by the manufacturer's representative, [5] efficacy testing of the equipment should be completed and documented ensuring equipment is functioning as intended. [5]
A sterile processing technician is someone who cleans and sterilizes used surgical instruments and other medical supplies so that they can be safely redistributed and reused on future patients. This work is usually centralized in a special department of the medical facility. Job titles include the following:[ citation needed ]
Sterile processing departments are typically divided into four major areas to accomplish the functions of decontamination, assembly and sterile processing, sterile storage, and distribution. [6] [7]
An autoclave is a machine used to carry out industrial and scientific processes requiring elevated temperature and pressure in relation to ambient pressure and/or temperature. Autoclaves are used before surgical procedures to perform sterilization and in the chemical industry to cure coatings and vulcanize rubber and for hydrothermal synthesis. Industrial autoclaves are used in industrial applications, especially in the manufacturing of composites.
An operating theater is a facility within a hospital where surgical operations are carried out in an aseptic environment.
Sterilization refers to any process that removes, kills, or deactivates all forms of life and other biological agents present in or on a specific surface, object, or fluid. Sterilization can be achieved through various means, including heat, chemicals, irradiation, high pressure, and filtration. Sterilization is distinct from disinfection, sanitization, and pasteurization, in that those methods reduce rather than eliminate all forms of life and biological agents present. After sterilization, an object is referred to as being sterile or aseptic.
A disinfectant is a chemical substance or compound used to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than sterilization, which is an extreme physical or chemical process that kills all types of life. Disinfectants are generally distinguished from other antimicrobial agents such as antibiotics, which destroy microorganisms within the body, and antiseptics, which destroy microorganisms on living tissue. Disinfectants are also different from biocides—the latter are intended to destroy all forms of life, not just microorganisms. Disinfectants work by destroying the cell wall of microbes or interfering with their metabolism. It is also a form of decontamination, and can be defined as the process whereby physical or chemical methods are used to reduce the amount of pathogenic microorganisms on a surface.
A medical device is any device intended to be used for medical purposes. Significant potential for hazards are inherent when using a device for medical purposes and thus medical devices must be proved safe and effective with reasonable assurance before regulating governments allow marketing of the device in their country. As a general rule, as the associated risk of the device increases the amount of testing required to establish safety and efficacy also increases. Further, as associated risk increases the potential benefit to the patient must also increase.
Asepsis is the state of being free from disease-causing micro-organisms. There are two categories of asepsis: medical and surgical. The modern day notion of asepsis is derived from the older antiseptic techniques, a shift initiated by different individuals in the 19th century who introduced practices such as the sterilizing of surgical tools and the wearing of surgical gloves during operations. The goal of asepsis is to eliminate infection, not to achieve sterility. Ideally, a surgical field is sterile, meaning it is free of all biological contaminants, not just those that can cause disease, putrefaction, or fermentation. Even in an aseptic state, a condition of sterile inflammation may develop. The term often refers to those practices used to promote or induce asepsis in an operative field of surgery or medicine to prevent infection.
A cleanroom suit, clean room suit, or bunny suit, is an overall garment worn in a cleanroom, an environment with a controlled level of contamination. One common type is an all-in-one coverall worn by semiconductor and nanotechnology line production workers, technicians, and process / equipment engineers. Similar garments are worn by people in similar roles creating sterile products for the medical device, biopharmaceutical and optical instrument industries.
A bedpan or bed pan is a device used as a receptacle for the urine and/or feces of a person who is confined to a bed and therefore not able to use a toilet or chamber pot.
A tattoo artist is an individual who applies permanent decorative tattoos, often in an established business called a "tattoo shop", "tattoo studio" or "tattoo parlour". Tattoo artists usually learn their craft via an apprenticeship under a trained and experienced mentor.
Infection prevention and control is the discipline concerned with preventing healthcare-associated infections; a practical rather than academic sub-discipline of epidemiology. In Northern Europe, infection prevention and control is expanded from healthcare into a component in public health, known as "infection protection". It is an essential part of the infrastructure of health care. Infection control and hospital epidemiology are akin to public health practice, practiced within the confines of a particular health-care delivery system rather than directed at society as a whole.
A waste autoclave is a form of solid waste treatment that uses heat, steam and pressure of an industrial autoclave in the processing of waste. Waste autoclaves process waste either in batches or in continuous-flow processes. In batch processes, saturated steam is pumped into the autoclave at temperatures around 160 °C, or 320 °F. The steam pressure in the vessel is maintained up to 6 bars (gauge) for a period of up to 45 minutes to allow the process to fully 'cook' the waste. The autoclave process gives a very high pathogen and virus kill rate, although the fibrous products which come from the process are susceptible to bacteria and fungus as they are high in starch, cellulose and amino acids. When designed for sterilizing waste containing mostly liquids, a waste autoclave is known as an Effluent Decontamination System.
Aseptic processing is a processing technique wherein commercially thermally sterilized liquid products are packaged into previously sterilized containers under sterile conditions to produce shelf-stable products that do not need refrigeration. Aseptic processing has almost completely replaced in-container sterilization of liquid foods, including milk, fruit juices and concentrates, cream, yogurt, salad dressing, liquid egg, and ice cream mix. There has been an increasing popularity for foods that contain small discrete particles, such as cottage cheese, baby foods, tomato products, fruit and vegetables, soups, and rice desserts.
Moist heat sterilization describes sterilization techniques that use hot water vapor as a sterilizing agent. Heating an article is one of the earliest forms of sterilization practiced. The various procedures used to perform moist heat sterilization process cause destruction of micro-organisms by denaturation of macromolecules.
Biomedical waste or hospital waste is any kind of waste containing infectious materials generated during the treatment of humans or animals as well as during research involving biologics. It may also include waste associated with the generation of biomedical waste that visually appears to be of medical or laboratory origin, as well research laboratory waste containing biomolecules or organisms that are mainly restricted from environmental release. As detailed below, discarded sharps are considered biomedical waste whether they are contaminated or not, due to the possibility of being contaminated with blood and their propensity to cause injury when not properly contained and disposed. Biomedical waste is a type of biowaste.
Single-use medical device reprocessing is the disinfection, cleaning, remanufacturing, testing, packaging and labeling, and sterilization among other steps, of a used,, medical device to be put in service again. All reprocessed medical devices originally labeled for single use in the United States are subject to U.S. Food and Drug Administration (FDA) manufacturing requirements and must meet strict cleaning, functionality, and sterility specifications prior to use.
Integrated Medical Systems International, Inc., (IMS) is a surgical instrument management and clinical consulting company specializing in repair management, sterile process management, tracking, and other services related to surgical and endoscopic devices and instruments. Today the company operates repair facilities in Alabama, Florida, and Maryland. IMS has more than 1,200 employees nationwide.
Vanguard Healthcare Solutions Ltd. is a provider of mobile clinical facilities based in Gloucester.
Xenco Medical is an American medical technology company headquartered in San Diego, California that designs, develops, and distributes composite polymer medical devices.
Single-use medical devices include any medical equipment, instrument or apparatus having the ability to only be used once in a hospital or clinic and then disposed. The Food and Drug Administration defines this as any device entitled by its manufacturer that it is intended use is for one single patient and one procedure only. It is not reusable, therefore has a short lifespan, and is limited to one patient.
An N95 respirator is a particulate-filtering facepiece respirator or elastomeric filter that meets the U.S. National Institute for Occupational Safety and Health (NIOSH) N95 classification of air filtration, meaning that it filters at least 95% of airborne particles that have a mass median aerodynamic diameter of 0.3 micrometers under 42 CFR Part 84. This standard does not require that the respirator be resistant to oil; two other standards, R95 and P95, add that requirement. The N95 type is the most common particulate-filtering facepiece respirator. It is an example of a mechanical filter respirator, which provides protection against particulates but not against gases or vapors. An authentic N95 respirator is marked with the text "NIOSH" or the NIOSH logo, the filter class ("N95"), and, for filtering facepiece respirators, a "TC" approval number of the form XXX-XXXX, the approval number. All N95 respirators, regardless of type, must be listed on the NIOSH Certified Equipment List (CEL) or the NIOSH Trusted-Source page, and it must have headbands instead of ear loops.