Centroidal Voronoi tessellation

Last updated
Three centroidal Voronoi tessellations of five points in a square
CentroidalVoronoiTessellation1.png
CentroidalVoronoiTessellation2.png
CentroidalVoronoiTessellation3.png

In geometry, a centroidal Voronoi tessellation (CVT) is a special type of Voronoi tessellation in which the generating point of each Voronoi cell is also its centroid (center of mass). It can be viewed as an optimal partition corresponding to an optimal distribution of generators. A number of algorithms can be used to generate centroidal Voronoi tessellations, including Lloyd's algorithm for K-means clustering or Quasi-Newton methods like BFGS. [1]

Contents

Proofs

Gersho's conjecture, proven for one and two dimensions, says that "asymptotically speaking, all cells of the optimal CVT, while forming a tessellation, are congruent to a basic cell which depends on the dimension." [2]

In two dimensions, the basic cell for the optimal CVT is a regular hexagon as it is proven to be the most dense packing of circles in 2D Euclidean space. Its three dimensional equivalent is the rhombic dodecahedral honeycomb, derived from the most dense packing of spheres in 3D Euclidean space.

Applications

Centroidal Voronoi tessellations are useful in data compression, optimal quadrature, optimal quantization, clustering, and optimal mesh generation. [3]

A weighted centroidal Voronoi diagrams is a CVT in which each centroid is weighted according to a certain function. For example, a grayscale image can be used as a density function to weight the points of a CVT, as a way to create digital stippling. [4]

Occurrence in nature

Many patterns seen in nature are closely approximated by a centroidal Voronoi tessellation. Examples of this include the Giant's Causeway, the cells of the cornea, [5] and the breeding pits of the male tilapia. [3]


Related Research Articles

<span class="mw-page-title-main">Delaunay triangulation</span> Triangulation method

In mathematics and computational geometry, a Delaunay triangulation (DT), also known as a Delone triangulation, for a given set {pi} of discrete points pi in general position is a triangulation such that no point pi is inside the circumcircle of any triangle in the DT. Delaunay triangulations maximize the minimum of all the angles of the triangles in the triangulation; they tend to avoid sliver triangles. The triangulation is named after Boris Delaunay for his work on this topic from 1934.

Vector quantization (VQ) is a classical quantization technique from signal processing that allows the modeling of probability density functions by the distribution of prototype vectors. It was originally used for data compression. It works by dividing a large set of points (vectors) into groups having approximately the same number of points closest to them. Each group is represented by its centroid point, as in k-means and some other clustering algorithms. In simpler terms, vector quantization chooses a set of points to represent a larger set of points.

<span class="mw-page-title-main">Voronoi diagram</span> Type of plane partition

In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. It can be classified also as a tessellation. In the simplest case, these objects are just finitely many points in the plane. For each seed there is a corresponding region, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation.

<span class="mw-page-title-main">Packing problems</span> Problems which attempt to find the most efficient way to pack objects into containers

Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.

<span class="mw-page-title-main">Sphere packing</span> An arrangement of non-overlapping spheres within a containing space

In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions or to non-Euclidean spaces such as hyperbolic space.

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances, but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians and k-medoids.

<span class="mw-page-title-main">Lloyd's algorithm</span>

In electrical engineering and computer science, Lloyd's algorithm, also known as Voronoi iteration or relaxation, is an algorithm named after Stuart P. Lloyd for finding evenly spaced sets of points in subsets of Euclidean spaces and partitions of these subsets into well-shaped and uniformly sized convex cells. Like the closely related k-means clustering algorithm, it repeatedly finds the centroid of each set in the partition and then re-partitions the input according to which of these centroids is closest. In this setting, the mean operation is an integral over a region of space, and the nearest centroid operation results in Voronoi diagrams.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of 3-or-more dimensional euclidian or hyperbolic space

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.

<span class="mw-page-title-main">16-cell honeycomb</span>

In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.

<span class="mw-page-title-main">24-cell honeycomb</span>

In four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular space-filling tessellation of 4-dimensional Euclidean space by regular 24-cells. It can be represented by Schläfli symbol {3,4,3,3}.

The 5-demicube honeycomb is a uniform space-filling tessellation in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.

The 7-demicubic honeycomb, or demihepteractic honeycomb is a uniform space-filling tessellation in Euclidean 7-space. It is constructed as an alternation of the regular 7-cubic honeycomb.

The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.

<span class="mw-page-title-main">Weighted Voronoi diagram</span> Generalization of Voronoi diagrams

In mathematics, a weighted Voronoi diagram in n dimensions is a generalization of a Voronoi diagram. The Voronoi cells in a weighted Voronoi diagram are defined in terms of a distance function. The distance function may specify the usual Euclidean distance, or may be some other, special distance function. In weighted Voronoi diagrams, each site has a weight that influences the distance computation. The idea is that larger weights indicate more important sites, and such sites will get bigger Voronoi cells.

<span class="mw-page-title-main">Power diagram</span> Partition of the Euclidean plane

In computational geometry, a power diagram, also called a Laguerre–Voronoi diagram, Dirichlet cell complex, radical Voronoi tesselation or a sectional Dirichlet tesselation, is a partition of the Euclidean plane into polygonal cells defined from a set of circles. The cell for a given circle C consists of all the points for which the power distance to C is smaller than the power distance to the other circles. The power diagram is a form of generalized Voronoi diagram, and coincides with the Voronoi diagram of the circle centers in the case that all the circles have equal radii.

<span class="mw-page-title-main">Delone set</span> Well-spaced set of points in a metric space

In the mathematical theory of metric spaces, ε-nets, ε-packings, ε-coverings, uniformly discrete sets, relatively dense sets, and Delone sets are several closely related definitions of well-spaced sets of points, and the packing radius and covering radius of these sets measure how well-spaced they are. These sets have applications in coding theory, approximation algorithms, and the theory of quasicrystals.

In geometry, a plesiohedron is a special kind of space-filling polyhedron, defined as the Voronoi cell of a symmetric Delone set. Three-dimensional Euclidean space can be completely filled by copies of any one of these shapes, with no overlaps. The resulting honeycomb will have symmetries that take any copy of the plesiohedron to any other copy.

References

  1. Nocedal, Jorge; Wright, Stephen J. (2006). Numerical Optimization. Springer Series in Operations Research and Financial Engineering (second ed.). Springer. doi:10.1007/978-0-387-40065-5. ISBN   978-0-387-30303-1.
  2. Du, Qiang; Wang, Desheng (2005), "The Optimal Centroidal Voronoi Tessellations and the Gersho's Conjecture in the Three-Dimensional Space", Computers and Mathematics with Applications, 49 (9–10): 1355–1373, doi: 10.1016/j.camwa.2004.12.008
  3. 1 2 Du, Qiang; Faber, Vance; Gunzburger, Max (1999), "Centroidal Voronoi Tessellations: Applications and Algorithms", SIAM Review, 41 (4): 637–676, Bibcode:1999SIAMR..41..637D, CiteSeerX   10.1.1.452.2448 , doi:10.1137/S0036144599352836 .
  4. Secord, Adrian. "Weighted voronoi stippling." Proceedings of the 2nd international symposium on Non-photorealistic animation and rendering. ACM, 2002.
  5. Pigatto, João Antonio Tadeu; et al. (2009). "Scanning electron microscopy of the corneal endothelium of ostrich". Cienc. Rural. 39 (3): 926–929. doi: 10.1590/S0103-84782009005000001 . hdl: 11449/29422 .