Cerebroside

Last updated
General structures of sphingolipids Sphingolipids general structures.png
General structures of sphingolipids

Cerebrosides (monoglycosylceramides) are a group of glycosphingolipids which are important components of animal muscle and nerve cell membranes.

Contents

They consist of a ceramide with a single sugar residue at the 1-hydroxyl moiety. The sugar residue can be either glucose or galactose; the two major types are therefore called glucocerebrosides (a.k.a. glucosylceramides) and galactocerebrosides (a.k.a. galactosylceramides). Galactocerebrosides are typically found in neural tissue, while glucocerebrosides are found in other tissues.

Structure

The fundamental structure of a cerebroside is ceramide. Monoglycosyl and oligoglycosylceramides having a mono or polysaccharide bonded glycosidically to the terminal OH group of ceramide are defined as cerebrosides. Sphingosine is the main long-chain base present in ceramide.

Galactosylceramide is the principal glycosphingolipid in brain tissue. Galactosylceramides are present in all nervous tissues, and can compose up to 2% dry weight of grey matter and 12% of white matter. They are major constituents of oligodendrocytes. Glucosylceramide is found at low levels in animal cells such as the spleen, erythrocytes, and nervous tissues, especially neurons. Glucosylceramide is a major constituent of skin lipids, where it is essential for lamellar body formation in the stratum corneum and to maintain the water permeability barrier of the skin. Glucosylceramide is the only glycosphingolipid common to plants, fungi and animals. It is usually considered to be the principal glycosphingolipid in plants. It is a major component of the outer layer of the plasma membrane. Galactosylceramides have not been found in plants.

Monogalactosylceramide is the largest single component of the myelin sheath of nerves. Cerebroside synthesis can therefore give a measurement of myelin formation or remyelination. [1] The sugar moiety is linked glycosidically to the C-1 hydroxyl group of ceramide, such as in lactosylceramide. Cerebrosides containing a sulfuric ester (sulfate) group, known as sulfatides, also occur in the myelin sheath of nerves. These compounds are preferably named as sulfates of the parent glycosphingolipid.

Synthesis

The biosynthesis of monoglycosylceramides requires a direct transfer of the carbohydrate moiety from a sugar-nucleotide, such as uridine 5-diphosphate(UDP)-galactose, or UDP-glucose to the ceramide unit. The glycosyl-transferase catalyzed reaction results in an inversion of the glycosidic bond stereochemistry, changing from α →β. Synthesis of galactosylceramide, and glucosylceramide occurs on the lumenal surface of the endoplasmic reticulum, and on the cytosolic side of the early Golgi membranes respectively.

Physical properties

The melting point of cerebrosides is considerably greater than physiological body temperature, >37.0 °C, giving glycolipids a paracrystalline, similar to liquid crystal structure. Cerebroside molecules are able form up to eight intermolecular hydrogen bonds between the polar hydrogens of the sugar and the hydroxy and amide groups of the sphingosine base of the ceramide. These hydrogen bonds within the cerebrosides result in the molecules having a high transition temperature and compact alignment. Monoglycosylceramides in conjunction with cholesterol are prevalent in the lipid-raft micro domain, which are important sites in the binding of proteins, and enzyme-receptor interactions.

Catabolism

Degradation of glycosphingolipids occurs in the lysosome, which contains digestive enzymes in animal cells. The lysosome breaks down the glycosphingolipid to its primary components, fatty acids, sphingosine, and saccharide. [2]

Chemical analysis

Analysis of monoglycosylceramides can be done by high-resolution thin-layer chromatography, high-performance liquid chromatography (HPLC), and mass spectrometry. Reversed-phase HPLC is now the standard method for separation of molecular species, often after benzoylation, enabling lipids to be detected by UV spectrophotometry.

Role in disease

A defect in the degradation of glucocerebrosides is Gaucher's disease. The corresponding defects for galactocerebrosides are:

a) Ceramide trihexoside (globotriaosylceramide) accumulation – Fabry's disease. Clinical features include acroparaesthesia (tingling, pins and needles sensation in the extremities) [3]

b) Galactocerebroside (galactosylceramidase) accumulation – Krabbe disease. [4]

Related Research Articles

<span class="mw-page-title-main">Lipid</span> Substance of biological origin that is soluble in nonpolar solvents

Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.

A glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

<span class="mw-page-title-main">Glycolipid</span> Class of chemical compounds

Glycolipids are lipids with a carbohydrate attached by a glycosidic (covalent) bond. Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the connections that allow cells to connect to one another to form tissues. Glycolipids are found on the surface of all eukaryotic cell membranes, where they extend from the phospholipid bilayer into the extracellular environment.

<span class="mw-page-title-main">Sphingolipid</span> Family of chemical compounds

Sphingolipids are a class of lipids containing a backbone of sphingoid bases, which are a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sphinx because of their enigmatic nature. These compounds play important roles in signal transduction and cell recognition. Sphingolipidoses, or disorders of sphingolipid metabolism, have particular impact on neural tissue. A sphingolipid with a terminal hydroxyl group is a ceramide. Other common groups bonded to the terminal oxygen atom include phosphocholine, yielding a sphingomyelin, and various sugar monomers or dimers, yielding cerebrosides and globosides, respectively. Cerebrosides and globosides are collectively known as glycosphingolipids.

<span class="mw-page-title-main">Sphingomyelin</span> Class of chemical compounds

Sphingomyelin is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath that surrounds some nerve cell axons. It usually consists of phosphocholine and ceramide, or a phosphoethanolamine head group; therefore, sphingomyelins can also be classified as sphingophospholipids. In humans, SPH represents ~85% of all sphingolipids, and typically make up 10–20 mol % of plasma membrane lipids.

Glycosphingolipids are a subtype of glycolipids containing the amino alcohol sphingosine. They may be considered as sphingolipids with an attached carbohydrate. Glycosphingolipids are a group of lipids and are a part of the cell membrane. They consist of a hydrophobic ceramide part and a glycosidically bound carbohydrate part. This oligosaccharide content remains on the outside of the cell membrane where it is important for biological processes such as cell adhesion or cell–cell interactions. Glycosphingolipids play also important role in oncogenesis and ontogenesis.

<span class="mw-page-title-main">Ganglioside</span> Class of chemical compounds

A ganglioside is a molecule composed of a glycosphingolipid with one or more sialic acids linked on the sugar chain. NeuNAc, an acetylated derivative of the carbohydrate sialic acid, makes the head groups of gangliosides anionic at pH 7, which distinguishes them from globosides.

<span class="mw-page-title-main">Ceramide</span> Family of waxy lipid molecules

Ceramides are a family of waxy lipid molecules. A ceramide is composed of sphingosine and a fatty acid joined by an amide bond. Ceramides are found in high concentrations within the cell membrane of eukaryotic cells, since they are component lipids that make up sphingomyelin, one of the major lipids in the lipid bilayer. Contrary to previous assumptions that ceramides and other sphingolipids found in cell membrane were purely supporting structural elements, ceramide can participate in a variety of cellular signaling: examples include regulating differentiation, proliferation, and programmed cell death (PCD) of cells.

<span class="mw-page-title-main">Glucocerebrosidase</span> Mammalian protein found in humans

β-Glucocerebrosidase is an enzyme with glucosylceramidase activity that cleaves by hydrolysis the β-glycosidic linkage of the chemical glucocerebroside, an intermediate in glycolipid metabolism that is abundant in cell membranes. It is localized in the lysosome, where it remains associated with the lysosomal membrane. β-Glucocerebrosidase is 497 amino acids in length and has a molecular mass of 59,700 Da.

<span class="mw-page-title-main">Glucocerebroside</span> Family of lipids

Glucocerebroside is any of the cerebrosides in which the monosaccharide head group is glucose.

<span class="mw-page-title-main">Lipid signaling</span> Biological signaling using lipid molecules

Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

Sulfatide, also known as 3-O-sulfogalactosylceramide, SM4, or sulfated galactocerebroside, is a class of sulfolipids, specifically a class of sulfoglycolipids, which are glycolipids that contain a sulfate group. Sulfatide is synthesized primarily starting in the endoplasmic reticulum and ending in the Golgi apparatus where ceramide is converted to galactocerebroside and later sulfated to make sulfatide. Of all of the galactolipids that are found in the myelin sheath, one fifth of them are sulfatide. Sulfatide is primarily found on the extracellular leaflet of the myelin plasma membrane produced by the oligodendrocytes in the central nervous system and in the Schwann cells in the peripheral nervous system. However, sulfatide is also present on the extracellular leaflet of the plasma membrane of many cells in eukaryotic organisms.

<span class="mw-page-title-main">Membrane lipid</span> Lipid molecules on cell membrane

Membrane lipids are a group of compounds which form the lipid bilayer of the cell membrane. The three major classes of membrane lipids are phospholipids, glycolipids, and cholesterol. Lipids are amphiphilic: they have one end that is soluble in water ('polar') and an ending that is soluble in fat ('nonpolar'). By forming a double layer with the polar ends pointing outwards and the nonpolar ends pointing inwards membrane lipids can form a 'lipid bilayer' which keeps the watery interior of the cell separate from the watery exterior. The arrangements of lipids and various proteins, acting as receptors and channel pores in the membrane, control the entry and exit of other molecules and ions as part of the cell's metabolism. In order to perform physiological functions, membrane proteins are facilitated to rotate and diffuse laterally in two dimensional expanse of lipid bilayer by the presence of a shell of lipids closely attached to protein surface, called annular lipid shell.

<span class="mw-page-title-main">Galactosylceramide</span>

A galactosylceramide, or galactocerebroside is a type of cerebroside consisting of a ceramide with a galactose residue at the 1-hydroxyl moiety.

<span class="mw-page-title-main">Globoside</span> Class of chemical compounds

Globosides are a sub-class of the lipid class glycosphingolipid with three to nine sugar molecules as the side chain of ceramide. The sugars are usually a combination of N-acetylgalactosamine, D-glucose or D-galactose. One characteristic of globosides is that the "core" sugars consists of Glucose-Galactose-Galactose (Ceramide-βGlc4-1βGal4-1αGal), like in the case of the most basic globoside, globotriaosylceramide (Gb3), also known as pk-antigen. Another important characteristic of globosides is that they are neutral at pH 7, because they usually do not contain neuraminic acid, a sugar with an acidic carboxy-group. However, some globosides with the core structure Cer-Glc-Gal-Gal do contain neuraminic acid, e.g. the globo-series glycosphingolipid "SSEA-4-antigen".

Myelinogenesis is the formation and development of myelin sheaths in the nervous system, typically initiated in late prenatal neurodevelopment and continuing throughout postnatal development. Myelinogenesis continues throughout the lifespan to support learning and memory via neural circuit plasticity as well as remyelination following injury. Successful myelination of axons increases action potential speed by enabling saltatory conduction, which is essential for timely signal conduction between spatially separate brain regions, as well as provides metabolic support to neurons.

In enzymology, a 2-hydroxyacylsphingosine 1-beta-galactosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UGCG</span> Protein-coding gene in the species Homo sapiens

Ceramide glucosyltransferase is an enzyme that in humans is encoded by the UGCG gene.

<span class="mw-page-title-main">UGT8</span> Protein-coding gene in the species Homo sapiens

2-hydroxyacylsphingosine 1-beta-galactosyltransferase is an enzyme that in humans is encoded by the UGT8 gene.

<span class="mw-page-title-main">Lactosylceramide</span>

The Lactosylceramides, also known as LacCer, are a class of glycosphingolipids composed of a variable hydrophobic ceramide lipid and a hydrophilic sugar moiety. Lactosylceramides are found in microdomains on the plasma layers of numerous cells. Moreover, they are a type of ceramide including lactose, which is an example of a globoside.

References

  1. Jurevics, H; Hostettler, J; Muse, ED; Sammond, DW; Matsushima, GK; Toews, AD; Morell, P (May 2001). "Cerebroside synthesis as a measure of the rate of remyelination following cuprizone-induced demyelination in brain". Journal of Neurochemistry. 77 (4): 1067–76. doi: 10.1046/j.1471-4159.2001.00310.x . PMID   11359872.
  2. Yanagihara, T; Cumings, JN (1969). "Fatty acid composition of cerebrosides and cerebroside sulphatides in cerebral oedema". Acta Neuropathologica. 12 (1): 62–67. doi:10.1007/BF00685311. PMID   4303520. S2CID   244169.
  3. Harvey, James (18 January 2021). "Acroparesthesia". Radiopaedia. Retrieved 3 August 2023.
  4. "Krabbe Disease". National Institute of Neurological Disorders and Stroke. National Institutes of Health. Retrieved 3 August 2023.