Chematica

Last updated
Chematica
Developer(s) Elizabeth Wylie, Matthew Wampler-Doty, Ling Su, Andrea Cadeddu, Aaron Oppenheimer, Patrick Fuller, Malous Kossarian, Chris Gothard, Nosheen Gothard, Kamel Meguellati, Mikolaj Kowalik, Kyle Bishop, Bartosz Grzybowski
Initial releaseN/A
Written in Python, Java, C++, CoffeeScript
Platform Cross-platform
Available inEnglish
Type Computer algebra, numerical computations, Information visualization, statistics, user interface creation
License Proprietary

Chematica is a software that uses algorithms and a collective database to predict synthesis pathways for molecules. The software development, led by Bartosz A. Grzybowski, was publicized in August 2012. In 2017, the software and database were wholly purchased by Merck KGaA | MRK. [1] [2] Since the acquisition, the software has been made commercially available as Synthia. [3]

Features

The software was designed to combine long synthesis paths into shorter and more economical paths. [4] The software complements other attempts such as manual searching or semi-automated search tools. [5]

A molecule can be specified in multiple ways, including searching by Beilstein Registry Number, CAS registry number, chemical name, SMILES structure, or by drawing the molecule diagram itself. [6] It supports optimization of reactions by cost. The program also supports 3D modeling of individual molecules, as well as labeling of functional groups. [6]

The program also notes regulated and unregulated compounds, and uses specialized algorithms that avoid these. It also gives the classification and reasons for regulation. [6]

Related Research Articles

<span class="mw-page-title-main">Computational chemistry</span> Branch of chemistry

Computational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of molecules, groups of molecules, and solids. The importance of this subject stems from the fact that, with the exception of some relatively recent findings related to the hydrogen molecular ion, achieving an accurate quantum mechanical depiction of chemical systems analytically, or in a closed form, is not feasible. The complexity inherent in the many-body problem exacerbates the challenge of providing detailed descriptions of quantum mechanical systems. While computational results normally complement information obtained by chemical experiments, it can occasionally predict unobserved chemical phenomena.

Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number of compounds in a single process. These compound libraries can be made as mixtures, sets of individual compounds or chemical structures generated by computer software. Combinatorial chemistry can be used for the synthesis of small molecules and for peptides.

<span class="mw-page-title-main">CAS Registry Number</span> Chemical identifier

A CAS Registry Number is a unique identification number, assigned by the Chemical Abstracts Service (CAS) in the US to every chemical substance described in the open scientific literature, in order to index the substance in the CAS Registry. This registry includes all substances described since 1957, plus some substances from as far back as the early 1800s; it is a chemical database that includes organic and inorganic compounds, minerals, isotopes, alloys, mixtures, and nonstructurable materials. CAS RNs are generally serial numbers, so they do not contain any information about the structures themselves the way SMILES and InChI strings do.

A chemical database is a database specifically designed to store chemical information. This information is about chemical and crystal structures, spectra, reactions and syntheses, and thermophysical data.

Cheminformatics refers to the use of physical chemistry theory with computer and information science techniques—so called "in silico" techniques—in application to a range of descriptive and prescriptive problems in the field of chemistry, including in its applications to biology and related molecular fields. Such in silico techniques are used, for example, by pharmaceutical companies and in academic settings to aid and inform the process of drug discovery, for instance in the design of well-defined combinatorial libraries of synthetic compounds, or to assist in structure-based drug design. The methods can also be used in chemical and allied industries, and such fields as environmental science and pharmacology, where chemical processes are involved or studied.

<span class="mw-page-title-main">Chemical space</span>

Chemical space is a concept in cheminformatics referring to the property space spanned by all possible molecules and chemical compounds adhering to a given set of construction principles and boundary conditions. It contains millions of compounds which are readily accessible and available to researchers. It is a library used in the method of molecular docking.

The International Chemical Identifier is a textual identifier for chemical substances, designed to provide a standard way to encode molecular information and to facilitate the search for such information in databases and on the web. Initially developed by the International Union of Pure and Applied Chemistry (IUPAC) and National Institute of Standards and Technology (NIST) from 2000 to 2005, the format and algorithms are non-proprietary. Since May 2009, it has been developed by the InChI Trust, a nonprofit charity from the United Kingdom which works to implement and promote the use of InChI.

Oxidative coupling in chemistry is a coupling reaction of two molecular entities through an oxidative process. Usually oxidative couplings are catalysed by a transition metal complex like in classical cross-coupling reactions, although the underlying mechanism is different due to the oxidation process that requires an external oxidant. Many such couplings utilize dioxygen as the stoichiometric oxidant but proceed by electron transfer.

Internal Coordinate Mechanics (ICM) is a software program and algorithm to predict low-energy conformations of molecules by sampling the space of internal coordinates defining molecular geometry. In ICM each molecule is constructed as a tree from an entry atom where each next atom is built iteratively from the preceding three atoms via three internal variables. The rings kept rigid or imposed via additional restraints. ICM is used for modelling peptides and interactions with substrates and coenzymes.

<span class="mw-page-title-main">Stuart Schreiber</span> American chemist

Stuart Schreiber is an American chemist who is the Morris Loeb Research Professor at Harvard University, a co-Founder of the Broad Institute, Howard Hughes Medical Institute Investigator, Emeritus, and a member of the National Academy of Sciences and National Academy of Medicine. He currently leads Arena BioWorks.

This page describes mining for molecules. Since molecules may be represented by molecular graphs this is strongly related to graph mining and structured data mining. The main problem is how to represent molecules while discriminating the data instances. One way to do this is chemical similarity metrics, which has a long tradition in the field of cheminformatics.

ChemSpider is a freely accessible online database of chemicals owned by the Royal Society of Chemistry. It contains information on more than 100 million molecules from over 270 data sources, each of them receiving a unique identifier called ChemSpider Identifier.

In the field of computational chemistry, energy minimization is the process of finding an arrangement in space of a collection of atoms where, according to some computational model of chemical bonding, the net inter-atomic force on each atom is acceptably close to zero and the position on the potential energy surface (PES) is a stationary point. The collection of atoms might be a single molecule, an ion, a condensed phase, a transition state or even a collection of any of these. The computational model of chemical bonding might, for example, be quantum mechanics.

MacroModel is a computer program for molecular modelling of organic compounds and biopolymers. It features various chemistry force fields, plus energy minimizing algorithms, to predict geometry and relative conformational energies of molecules. MacroModel is maintained by Schrödinger, LLC.

Biomimetic synthesis is an area of organic chemical synthesis that is specifically biologically inspired. The term encompasses both the testing of a "biogenetic hypothesis" through execution of a series of reactions designed to parallel the proposed biosynthesis, as well as programs of study where a synthetic reaction or reactions aimed at a desired synthetic goal are designed to mimic one or more known enzymic transformations of an established biosynthetic pathway. The earliest generally cited example of a biomimetic synthesis is Sir Robert Robinson's organic synthesis of the alkaloid tropinone.

Matched molecular pair analysis (MMPA) is a method in cheminformatics that compares the properties of two molecules that differ only by a single chemical transformation, such as the substitution of a hydrogen atom by a chlorine one. Such pairs of compounds are known as matched molecular pairs (MMP). Because the structural difference between the two molecules is small, any experimentally observed change in a physical or biological property between the matched molecular pair can more easily be interpreted. The term was first coined by Kenny and Sadowski in the book Chemoinformatics in Drug Discovery.

<span class="mw-page-title-main">Automated synthesis</span> Type of chemical synthesis

Automated synthesis or automatic synthesis is a set of techniques that use robotic equipment to perform chemical synthesis in an automated way. Automating processes allows for higher efficiency and product quality although automation technology can be cost-prohibitive and there are concerns regarding overdependence and job displacement. Chemical processes were automated throughout the 19th and 20th centuries, with major developments happening in the previous thirty years, as technology advanced. Tasks that are performed may include: synthesis in variety of different conditions, sample preparation, purification, and extractions. Applications of automated synthesis are found on research and industrial scales in a wide variety of fields including polymers, personal care, and radiosynthesis.

<span class="mw-page-title-main">Bernhard Schlegel</span> German-born Canadian chemist

Hans Bernhard "Berny" Schlegel is German-born computational and theoretical chemist, and distinguished professor at Wayne State University. He is a highly cited chemist, with a Thomson Reuters H-Index of 116 and citations of over 218,000 as of 2020. He is a professor of chemistry at the Wayne State University and co-author of the computational chemistry software, Gaussian. The "Berny optimization" as implemented in Gaussian is named after him. His group also created the Electronic Structure Perl Toolkit (ESPT).

References

  1. Merck KGaA to buy Chematica, by Andy Extance, at ChemistryWorld; published May 12, 2017; retrieved January 1, 2019
  2. Klucznik, Tomasz; Mikulak-Klucznik, Barbara; McCormack, Michael P.; Lima, Heather; Szymkuć, Sara; Bhowmick, Manishabrata; Molga, Karol; Zhou, Yubai; Rickershauser, Lindsey; Gajewska, Ewa P.; Toutchkine, Alexei (March 2018). "Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory". Chem. 4 (3): 522–532. doi: 10.1016/j.chempr.2018.02.002 . ISSN   2451-9294.
  3. Synthia
  4. Fellman, Megan. "Northwestern Scientists Create Chemical Brain". Northwestern University Press. Retrieved 25 August 2012.
  5. Grzybowski, Bartosz A.; Kyle J. M. Bishop; Mikołaj Kowalik; Chris M. Gothard; Aaron M. Drews; Nosheen A. Gothard; Alex Weckiewicz; Patrick E. Fuller (August 2012). "Parallel Optimization of Synthetic Pathways within the Network of Organic Chemistry". Angew. Chem. Int. Ed. 51 (32): 7928–7932. doi:10.1002/anie.201202209. PMID   22807100.
  6. 1 2 3 Chematica Demonstration. May 2012.Retrieved2013-04-09.