Chemical fouling inhibitors

Last updated

Chemical fouling inhibitors are products that are mixtures of fouling and corrosion inhibitors use in boiler feedwater treatment. Several of these products use aliphatic polyamines to coat the surface of pipes.

Contents

Helamin

Helamin is a boiler feedwater treatment based on amines and polyamines. [1] Helamin is a registered trademark of Helamin Technology Holding SA, Switzerland. Patents have been obtained for Helamin products, and in 2016, the following patents exist: EP1045045, JP4663046, HK1032080, BR9903614. Chemically, most of the Helamin types are stated by the manufacturer to be a "mixture of polyamines and polycarboxylates in aqueous solution", but some also utilize volatile amines, ammonia, polyelectrolytes, organic polymers, and scavengers of dissolved oxygen.

In contrast to the conventional method of the water treatment, its action is based on a preventive protection of the surfaces. Helamin forms a film (i.e., is one of numerous available "filming amines"), which prevents corrosion and fouling on the water-side walls in steam boilers and piping systems, due to the affinity of Helamin to metal and oxide surfaces. Crystals which form in the presence of Helamine are isolated, so that they do not tend to group themselves. Thus deposit consolidation is inhibited. Already existing oxide surface deposits are gradually removed. In the boiler, a fine, liquid mud, which is easier to remove from the boiler walls, develops.

Helamin does not significantly decompose even at high temperature and pressure employed in the modern sub-critical -water power-plant boilers[ citation needed ]. Helamin treatment can be successfully employed in steam generators, warm and hot water piping systems, superheaters, as well as cooling circuits to mitigate some of the difficult problems of the corrosion and fouling. However, cation conductivity of water tends to increase with the use of Helamin. [1]

Fineamin

Fineamin is an anticorrosion water treatment technology based on filming polyamines and dispersive polymers. The manufacturing of the amine-based technology is done in Switzerland by h2o facilities SA, Geneva and it is ISO9001:2015 and ISO14001:2015 certified. Chemically, the Fineamin products are described by the manufacturer to be a "mixture of polyamines and polycarboxylates in aqueous solution", [2] but some contain also volatile and neutralizing amines, organic polymers and/or organic oxygen scavengers (DEHA).

Fineamin reacts by forming a protective, homogeneous film on all metal surfaces, improving the existing magnetite layer and acting as a barrier against water carryover and residual oxygen. It prevents the contact of the electrolyte with the metal surface without reducing the heat transfer, while any crystals which do form in its presence are isolated, and any tendency of accumulation is inhibited. Any existing corrosion products and deposits get dispersed and gently removed.

Fineamin treatment is used against corrosion and fouling in steam boilers, warm and hot water piping systems, superheaters, as well as cooling circuits.

Fineamin is an environmentally friendly technology and does not significantly decompose even at high temperature and pressure required by the modern power-plant boilers. [3] It can be used in steam water circuits with pressures up to 220 bar and temperatures up to 540°C due to a very low degradation ratio. [4] Fineamin generates ammonia and acetate in an almost insignificant quantity – as low as 1 ppb for 1 ppm of dosed product. However, cation conductivity of water tends to increase with the use of Fineamin. [5] The treatment also has an alkalizing effect on the boiler feed water and steam (the pH is maintained at optimal values).

Fineamin was developed in accordance with TÜV requirements and it holds the following certifications:

See also

Related Research Articles

<span class="mw-page-title-main">Boiler</span> Closed vessel in which fluid is heated

A boiler is a closed vessel in which fluid is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central heating, boiler-based power generation, cooking, and sanitation.

<span class="mw-page-title-main">Superheated steam</span> Steam whose temperature can be decreased without immediately condensing

Superheated steam is steam at a temperature higher than its vaporization point at the absolute pressure where the temperature is measured.

Morpholine is an organic chemical compound having the chemical formula O(CH2CH2)2NH. This heterocycle features both amine and ether functional groups. Because of the amine, morpholine is a base; its conjugate acid is called morpholinium. For example, treating morpholine with hydrochloric acid makes the salt morpholinium chloride. It is a colorless liquid with a weak, ammonia- or fish-like odor. The naming of morpholine is attributed to Ludwig Knorr, who incorrectly believed it to be part of the structure of morphine.

<span class="mw-page-title-main">Heat recovery steam generator</span> Energy recovery heat exchanger that recovers heat from a hot gas stream

A heat recovery steam generator (HRSG) is an energy recovery heat exchanger that recovers heat from a hot gas stream, such as a combustion turbine or other waste gas stream. It produces steam that can be used in a process (cogeneration) or used to drive a steam turbine.

<span class="mw-page-title-main">Thermal power station</span> Power plant that generates electricity from heat energy

A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a steam turbine connected to an electrical generator. The low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a Rankine cycle.

<span class="mw-page-title-main">Deaerator</span> Device that removes dissolved gases from liquids

A deaerator is a device that is used for the removal of dissolved gases like oxygen from a liquid.

<span class="mw-page-title-main">Fouling</span> Accumulation of unwanted material on solid surfaces

Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms (biofouling) or a non-living substance. Fouling is usually distinguished from other surface-growth phenomena in that it occurs on a surface of a component, system, or plant performing a defined and useful function and that the fouling process impedes or interferes with this function.

<span class="mw-page-title-main">Surface condenser</span> Steam engine component

A surface condenser is a water-cooled shell and tube heat exchanger installed to condense exhaust steam from a steam turbine in thermal power stations. These condensers are heat exchangers which convert steam from its gaseous to its liquid state at a pressure below atmospheric pressure. Where cooling water is in short supply, an air-cooled condenser is often used. An air-cooled condenser is however, significantly more expensive and cannot achieve as low a steam turbine exhaust pressure as a water-cooled surface condenser.

<span class="mw-page-title-main">Steam-electric power station</span>

The steam-electric power station is a power station in which the electric generator is steam driven. Water is heated, turns into steam and spins a steam turbine which drives an electrical generator. After it passes through the turbine, the steam is condensed in a condenser. The greatest variation in the design of steam-electric power plants is due to the different fuel sources.

A boiler feedwater pump is a specific type of pump used to pump feedwater into a steam boiler. The water may be freshly supplied or returning condensate produced as a result of the condensation of the steam produced by the boiler. These pumps are normally high pressure units that take suction from a condensate return system and can be of the centrifugal pump type or positive displacement type.

There are many uses of water in industry and, in most cases, the used water also needs treatment to render it fit for re-use or disposal. Raw water entering an industrial plant often needs treatment to meet tight quality specifications to be of use in specific industrial processes. Industrial water treatment encompasses all these aspects which include industrial wastewater treatment, boiler water treatment and cooling water treatment.

<span class="mw-page-title-main">Boiler water</span>

Boiler water is liquid water within a boiler, or in associated piping, pumps and other equipment, that is intended for evaporation into steam. The term may also be applied to raw water intended for use in boilers, treated boiler feedwater, steam condensate being returned to a boiler, or boiler blowdown being removed from a boiler.

Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) uses are discussed in this article. In simple terms, an economizer is a heat exchanger.

A condensate polisher is a device used to filter water condensed from steam as part of the steam cycle, for example in a conventional or nuclear power plant. It is frequently filled with polymer resins which are used to remove or exchange ions such that the purity of the condensate is maintained at or near that of distilled water.

<span class="mw-page-title-main">Boiler feedwater</span>

Boiler feedwater is an essential part of boiler operations. The feed water is put into the steam drum from a feed pump. In the steam drum the feed water is then turned into steam from the heat. After the steam is used, it is then dumped to the main condenser. From the condenser, it is then pumped to the deaerated feed tank. From this tank it then goes back to the steam drum to complete its cycle. The feedwater is never open to the atmosphere. This cycle is known as a closed system or Rankine cycle.

<span class="mw-page-title-main">Boiler (power generation)</span> High pressure steam generator

A boiler or steam generator is a device used to create steam by applying heat energy to water. Although the definitions are somewhat flexible, it can be said that older steam generators were commonly termed boilers and worked at low to medium pressure but, at pressures above this, it is more usual to speak of a steam generator.

Boilers for generating steam or hot water have been designed in countless shapes, sizes and configurations. An extensive terminology has evolved to describe their common features. This glossary provides definitions for these terms.

Ultrapure water (UPW), high-purity water or highly purified water (HPW) is water that has been purified to uncommonly stringent specifications. Ultrapure water is a term commonly used in manufacturing to emphasize the fact that the water is treated to the highest levels of purity for all contaminant types, including: organic and inorganic compounds; dissolved and particulate matter; volatile and non-volatile; reactive, and inert; hydrophilic and hydrophobic; and dissolved gases.

<span class="mw-page-title-main">Boiler blowdown</span> Wastewater removal of impurities from boilers

Boiler blowdown is water intentionally wasted from a boiler to avoid concentration of impurities during continuing evaporation of steam. The water is blown out of the boiler with some force by steam pressure within the boiler. Bottom blowdown used with early boilers caused abrupt downward adjustment of boiler water level and was customarily expelled downward to avoid the safety hazard of showering hot water on nearby individuals.

Oxygenated treatment (OT) is a technique used to reduce corrosion in a boiler and its associated feedwater system in flow-through boilers.

References

  1. 1 2 Bursik, A. (2004). "Polyamine/Amine Treatment - A Reasonable Alternative for Conditioning High Pressure Cycles with Drum Boilers" (PDF). Power Plant Chemistry. 6 (9): 549–555. Archived from the original (PDF) on 2007-10-09.
  2. Fineamin SA (30 June 2020). "Film-forming Amines" . Retrieved 20 May 2021.
  3. Barbu, C.; Adam, A.; Lapadat, A. (2019). "Study and research on the effects of using FINEAMIN as a modern solution for conditioning the feed water of energetic or industrial steam generators". 2019 International Conference on ENERGY and ENVIRONMENT (CIEM). Institute of Electrical and Electronics Engineers. pp. 544–548. doi:10.1109/CIEM46456.2019.8937596. ISBN   978-1-7281-1533-7. S2CID   209457090 . Retrieved 20 May 2021.
  4. Bezzoli, Pierre; Cramer, Karsten (2009). "Organic Plant Cycle Treatment Chemicals – A PowerPlant Chemistry Interview". PowerPlant Chemistry. 11 (10): 45–47. Retrieved 20 May 2021.
  5. A.Bursik, "Polyamine/Amine Treatment - A Reasonable Alternative for Conditioning High Pressure Cycles with Drum Boilers", Power Plant Chemistry, 2004,(6)9. http://www.ppchem.net/issues/09-04.php Archived 2017-10-12 at the Wayback Machine
  6. Renouf, E. (2020). "Evaluation of Ready Biodegradability: Dissolved Organic Carbon Die-away Following the OECD 301 A Guideline". Eurofins Ecotoxicologie France. Fineamin SA. Retrieved 20 May 2021.
  7. "Registration of Fineamin 39F to the NSF International Registration Guidelines for Proprietary Substances and Nonfood Compounds". NSF International / Nonfood Compounds Registration Program. 2019. Retrieved 20 May 2021.