This article needs additional citations for verification .(April 2024) |
In aircraft design, a chine is a longitudinal line of sharp change in the cross-section profile of the fuselage or similar body. The term chine originates in boatbuilding, where it applies to a sharp profile change in the hull of a boat. [note 1] In a flying boat hull or floatplane float, the longitudinal line of sharp change in cross-section where the bottom plane meets the sidewall is an example of a chine.
On some supersonic aircraft a chine extends sideways for some distance, with a very sharp edge blending in with the main wing leading edge root. [note 2] The rest of this article is concerned with this type of chine.
A chine can in aerodynamic terms act as a long extension of the wing root along the fuselage. Such chines first appeared on the Lockheed A-12 precursor of the SR-71 Blackbird, where they ran forward from the wing roots along the fuselage sides, into which they blended. [1]
The Lockheed Martin F-22 Raptor has chines along its nose section that align with its engine air intakes. [2] The small horizontal surfaces forming a fillet between the forward wing root and the air intake is more usually called a leading edge root extension (LERX) or leading-edge extension (LEX).
Large chines along the forward fuselage can have a significant effect on aircraft lift, drag, longitudinal balance and directional stability.
The chines of the Lockheed Blackbird series extend about 40% of the aircraft's length and contribute useful additional lift at supersonic speeds. The chines may be understood as enhancing the lift generated by the forebody by acting as a low aspect ratio canard surface. [3] In order to further increase this lift contribution, the forward fuselage is set with a positive incidence relative to the wing.
The chine lift increases with the square of the Mach number, helping counterbalance the rearward shift in the lift of the main wing in supersonic conditions. If a tailless (Delta) wing is trimmed for safe subsonic flight, at high speeds it gains excess trim drag in pitch and becomes excessively stable resulting in poor manoeuvrability. The destabilising effect of a forward surface is provided by the chines where it is needed most, at high Mach numbers.
Forward chines also act as leading edge root extensions (LERX) at low speeds and high angles of attack, generating a vortex flow over the inboard wing to stabilise the airflow and increase its speed locally, thus delaying the stall and also providing additional lift.
The chines also increase directional stability, by reducing the adverse effects of crosswinds or yaw on the forward fuselage. Unlike a conventional fuselage, the chines allow the crossflow to travel smoothly over their profile and beyond, avoiding the side forces due to flow separation and stagnation. Again the effect is stronger at higher speeds, and reduces the size of the vertical stabilisers (tail fins). The YF-12A lacked the foremost section of the chines seen on the SR-71 and consequently needed extra vertical tail surfaces.
The improved crossflow behaviour also benefits lateral characteristics by reducing yaw-induced roll, especially during landing and takeoff of delta-winged aircraft. This in turn helps reduce roll-yaw coupling and any tendency to Dutch roll. However chines have also been found to reduce lateral stability in some configurations, due to abrupt asymmetric vortex breakdown effect. [4]
Blending the chines into both the fuselage and the main wing avoids presenting corner reflectors or vertical sides to radars. [5] This has led fifth-generation jet fighter designs to replace low-stealth canard surfaces with chines, when helping to generate vortex lift over the main wings.[ citation needed ] (An exception is the Chengdu J-20, whose canards are mounted inline with its chines.)
The Lockheed SR-71 "Blackbird" is a retired long-range, high-altitude, Mach 3+ strategic reconnaissance aircraft developed and manufactured by the American aerospace company Lockheed Corporation. The SR-71 has several nicknames, including "Blackbird" and "Habu".
In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack exceeds its critical value. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil – including its shape, size, and finish – and Reynolds number.
A delta wing is a wing shaped in the form of a triangle. It is named for its similarity in shape to the Greek uppercase letter delta (Δ).
A flying wing is a tailless fixed-wing aircraft that has no definite fuselage, with its crew, payload, fuel, and equipment housed inside the main wing structure. A flying wing may have various small protuberances such as pods, nacelles, blisters, booms, or vertical stabilizers.
A leading-edge extension (LEX) is a small extension to an aircraft wing surface, forward of the leading edge. The primary reason for adding an extension is to improve the airflow at high angles of attack and low airspeeds, to improve handling and delay the stall. A dog tooth can also improve airflow and reduce drag at higher speeds.
A swept wing is a wing angled either backward or occasionally forward from its root rather than perpendicular to the fuselage.
The Lockheed L-2000 was Lockheed Corporation's entry in a government-funded competition to build the United States' first supersonic airliner in the 1960s. The L-2000 lost the contract to the Boeing 2707, but that competing design was ultimately canceled for political, environmental and economic reasons.
The Grumman X-29 is an American experimental aircraft that tested a forward-swept wing, canard control surfaces, and other novel aircraft technologies. Funded by NASA, the United States Air Force and DARPA, the X-29 was developed by Grumman, and the two built were flown by NASA and the United States Air Force. The aerodynamic instability of the X-29's airframe required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, and to reduce weight. The aircraft first flew in 1984, and two X-29s were flight tested through 1991.
In aircraft design and aerospace engineering, a high-lift device is a component or mechanism on an aircraft's wing that increases the amount of lift produced by the wing. The device may be a fixed component, or a movable mechanism which is deployed when required. Common movable high-lift devices include wing flaps and slats. Fixed devices include leading-edge slots, leading edge root extensions, and boundary layer control systems.
The empennage, also known as the tail or tail assembly, is a structure at the rear of an aircraft that provides stability during flight, in a way similar to the feathers on an arrow. The term derives from the French language verb empenner which means "to feather an arrow". Most aircraft feature an empennage incorporating vertical and horizontal stabilising surfaces which stabilise the flight dynamics of yaw and pitch, as well as housing control surfaces.
Aircraft flight mechanics are relevant to fixed wing and rotary wing (helicopters) aircraft. An aeroplane, is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
The United States Air Force Stability and Control Digital DATCOM is a computer program that implements the methods contained in the USAF Stability and Control DATCOM to calculate the static stability, control and dynamic derivative characteristics of fixed-wing aircraft. Digital DATCOM requires an input file containing a geometric description of an aircraft, and outputs its corresponding dimensionless stability derivatives according to the specified flight conditions. The values obtained can be used to calculate meaningful aspects of flight dynamics.
A vertical stabilizer or tail fin is the static part of the vertical tail of an aircraft. The term is commonly applied to the assembly of both this fixed surface and one or more movable rudders hinged to it. Their role is to provide control, stability and trim in yaw. It is part of the aircraft empennage, specifically of its stabilizers.
An aircraft stabilizer is an aerodynamic surface, typically including one or more movable control surfaces, that provides longitudinal (pitch) and/or directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable surface such as a stabilator. Depending on the context, "stabilizer" may sometimes describe only the front part of the overall surface.
Vortex lift is that portion of lift due to the action of leading edge vortices. It is generated by wings with highly sweptback, sharp, leading edges or highly-swept wing-root extensions added to a wing of moderate sweep. It is sometimes known as non-linear lift due to its rapid increase with angle of attack and controlled separation lift, to distinguish it from conventional lift which occurs with attached flow.
In aeronautics, a canard is a wing configuration in which a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft or a weapon. The term "canard" may be used to describe the aircraft itself, the wing configuration, or the foreplane. Canard wings are also extensively used in guided missiles and smart bombs.
In aeronautics, a tailless aircraft is an aircraft with no other horizontal aerodynamic surface besides its main wing. It may still have a fuselage, vertical tail fin, and/or vertical rudder.
The wing configuration of a fixed-wing aircraft is its arrangement of lifting and related surfaces.
In aviation, a strake is an aerodynamic surface generally mounted on the fuselage of an aircraft to improve the flight characteristics either by controlling the airflow or by a simple stabilising effect.
An outboard tail is a type of aircraft tail or empennage which is split in two, with each half mounted on a short boom just behind and outboard of each wing tip. It comprises outboard horizontal stabilizers (OHS) and may or may not include additional boom-mounted vertical stabilizers (fins). OHS designs are sometimes described as a form of tailless aircraft.
...the F-22's chine, a fuselage edge that provides smooth aerodynamic blending into the intakes and wings.