Chiral analysis

Last updated

Chiral analysis refers to the quantification of component enantiomers of racemic drug substances or pharmaceutical compounds. Other synonyms commonly used include enantiomer analysis, enantiomeric analysis, and enantioselective analysis. Chiral analysis includes all analytical procedures focused on the characterization of the properties of chiral drugs. [1] Chiral analysis is usually performed with chiral separation methods where the enantiomers are separated on an analytical scale and simultaneously assayed for each enantiomer. [2] [3] [4] [5] [6] [7] [8] [9] [10]

Contents

Many compounds of biological and pharmacological interest are chiral. Pharmacodynamic, pharmacokinetic, and toxicological properties of the enantiomers of racemic chiral drugs has expanded significantly and become a key issue for both the pharmaceutical industry and regulatory agencies. [11] [12] [13] [14] [15] [16] Typically one of the enantiomers is more active pharmacologically (eutomer). In several cases, unwanted side effects or even toxic effects may occur with the inactive enantiomer (distomer). [17] Even if the side effects are not that serious, the inactive enantiomer has to be metabolized, this puts an unnecessary burden on the already stressed out system of the patient. Large differences in activity between enantiomers reveal the need to accurate assessment of enantiomeric purity of pharmaceutical, agrochemicals, and other chemical entities like fragrances and flavors become very important. Moreover, the moment a racemic therapeutic is placed in a biological system, a chiral environment, it is no more 50:50 due enantioselective absorption, distribution, metabolism, and elimination (ADME) process. Hence to track the individual enantiomeric profile there is a need for chiral analysis tool.

Chiral technology is an active subject matter related to asymmetric synthesis [18] and enantioselective analysis, particularly in the area of chiral chromatography. As a consequence of the advances in chiral technology, a number of pharmaceuticals currently marketed as racemic drugs are undergoing re-assessment as chiral specific products or chiral switches. [19] [20] [21] [22] Despite the choice to foster either a single enantiomer or racemic drug, in the current regulatory environment, there will be a need for enantioselective investigations. This poses a big challenge to pharmaceutical analysts and chromatographers involved in drug development process. In pharmaceutical research and development stereochemical analytical methodology may be required to comprehend enantioselective drug action and disposition, chiral purity assessment, study stereochemical stability during formulation and production, assess dosage forms, enantiospecific bioavailability and bioequivalence investigations of chiral drugs. Besides pharmaceutical applications chiral analysis [23] plays a major role in the study of biological and environmental samples and also in the forensic field. [24] Chiral analysis methods and applications between the period 2010 and 2020 are exhaustively reviewed recently. [25] There are number of articles, columns, and interviews in LCGC relating to emerging trends in chiral analysis and its application in drug discovery and development process. [26] [27] [28] [29] [30] [31]

For chiral examination there is a need to have the right chiral environment. This could be provided as a plane polarized light, an additional chiral compound or by exploiting the inborn chirality of nature. The chiral analytical strategies incorporate physical, biological, and separation science techniques. Recently an optical-based absolute chiral analysis has been reported. [32] The most frequently employed technique in enantioselective analysis involve the separation science techniques, in particular chiral chromatographic methods or chiral chromatography. Today wide range of CSPs are available commercially based on various chiral selectors including polysaccharides, cyclodextrins, glycopeptide antibiotics, proteins, Pirkle, crown ethers, etc. to achieve analysis of chiral molecules. [33]

Chiral chromatography

This term has become very popular and commonly used in practice. But the appropriate expression is "enantioselective chromatography". [34] Chiral chromatography has advanced to turn into the most preferred technique for the determination of enantiomeric purity as well as separation of pure enantiomers both on analytical and preparative scale. Chiral chromatographic assay is the first step in any study pertaining to enantioselective synthesis or separation. This includes the use of techniques viz. gas chromatography (GC), high performance liquid chromatography (HPLC), chiral supercritical fluid chromatography (SFC), capillary electrophoresis (CE) [35] and thin-layer chromatography (TLC). [36] [37] [38] [39] [40] The result of a literature survey done identifies HPLC-based chiral assays as the most dominating technology in use. [41] An overview of various analytical methods engaged for chiral separation and analysis are listed in the table. [42] [43] [44]

Summary of analytical methods for chiral analysis
MethodBrief narrative of principle and application
Chromatographic
Chiral HPLCChiral HPLC is used to separate enantiomers either by direct or indirect separation mode. Widely employed to check enantiomeric purity, provided the reference standards of the racemate or the two enantiomers are available. Capable of distinguishing between enantiomers and from the racemate; (+) from (-) and (±)
Chiral GCMajority of chiral separations using GC are done with cyclodextrin derivatives as chiral selector. This method can be used to distinguish between enantiomers and from the racemate; (+) from (-) and (±)
Supercritical fluid chromatography (SFC)Principle is very similar to that of HPLC. But SFC typically uses carbon dioxide as the mobile phase. Hence there is a need to pressurize the entire chromatographic flow path. SFC can differentiate enantiomers and enantiomer from the racemate; (+) from (-) and (±)
Chiral capillary electrophoresis (CE) [45] Chiral CE is based largely on separation of enantiomers by complex formation with cyclodextrins which is used as the chiral selector. Able to differentiate between enantiomers and from the racemate; (+) from (-) and (±)
Spectroscopic
Polarimetry Polarimetry uses the innate property of chiral molecules to rotate the plane-polarized light in equal and opposite direction. This method can be used to distinguish between enantiomers and from the racemate; (+) from (-) and (±)
Optical rotatory dispersion (ORD)ORD is a curve obtained by plotting the measured optical activity of a chiral compound as a function of the wavelength of the light used. Distinguish between enantiomers and from the racemate; (+) from (-) and (±)
Circular dichroism
(CD)
CD measures the differential absorption of left and right circularly polarized light by a chiral compound. These chiroptical techniques can be employed to identify and/or determine enantiomers
Nuclear magnetic resonance (NMR)NMR spectroscopy done using chiral shift reagents or chiral solvating reagents. Capable of discriminating enantiomers as well as the racemate
Infrared (IR) Differentiate the racemate and its enantiomers but not between the enantiomeric pair; (+) or (-) from (±)
Calorimetry
Differential scanning calorimetry (DSC)The underlying principle is to measure the energy absorbed or evolved by a sample as a function of temperature. Data can distinguish between an enantiomer and the racemate, but not one enantiomer from its mirror-mage

Principle - separation of enantiomers

In an isotopic/achiral environment, enantiomers exhibit identical physicochemical properties, and therefore are indistinguishable under these conditions. For the separation of chiral molecules the challenge is to construct the right chiral environment. In a chromatographic system there are three variables namely, the chiral analyte (CA), mobile phase and stationary phase, that can be manipulated to provide the crucial chiral environment. The strategy is to make these variables to interact with a chiral auxiliary (chiral selector, CS) whereby it forms a diastereomeric complex which has different physicochemical properties and makes it possible to separate the enantiomers. Based on the nature of the diastereomeric complex formed between the CS-CA species, enantiomer separation mythologies are categorized as indirect and direct enantiomer separation mode

Indirect separation of enantiomer

Indirect enantiomer separation involves the interaction between the chiral analyte (CA) of interest and the suitable reactive CS (in this case it is an enantiopure chiral derivatizing agent, CDA) leading to the formation of a covalent diastereomeric complex that can be separated with an achiral chromatographic technique. Therapeutic agents often contain reactive functional groups (amino, hydroxyl, epoxy, carbonyl and carboxylic acid, etc.) in their structures. They are converted into covalently bonded diastereomeric derivatives using enantiomerically pure chiral derivatizing agent. The diastereomers thus formed unlike enantiomers, exhibit different physicochemical properties in an achiral environment and are eventually separated as a result of differential retention time on a stationary phase. [46] [47] [48] [49] [50] The success of this approach depends on the availability of stable enantiopure chiral derivatizing agent (CDA) and on the presence of a suitable reactive functional group in the chiral drug molecule for covalent formation of diastereomeric derivative. The reaction of a racemic, (R,S)- Drug with a chirally and chemically pure chiral derivatizing agent, (R’)-CDA, will afford diastereomeric products, (R)-Drug-(R')-CDA + (S)-Drug-(R’)- CDA. The chiral derivatization reaction scheme is illustrated in the box on the right hand side.

Indirect enantiomer separation - chiral derivatization Indirect enantiomer separation.png
Indirect enantiomer separation - chiral derivatization

In contrast to enantiomers, diastereomers have different physicochemical properties that make them separable on regular achiral stationary phases. The major benefit of the indirect methodology is that conventional achiral stationary phase/mobile phase system may be used for the separation of the generated diastereomers. Thus, considerable flexibility in chromatographic conditions is available to achieve the desired separation and to eliminate interferences from metabolites and endogenous substances. Moreover, the sensitivity of the method can be enhanced by sensible choice of the CDA and the chromatographic detection system. But this indirect approach to enantiomeric analysis has some potential problems. These include availability of a suitable functional group on the enantiomer for derivatization, enantiomeric purity of the CDA, racemization of the CDA during derivatization, and racemization of the analyte during the derivatization. Currently, however, the application of indirect analytical approaches is in decline.

Direct separation of enantiomers

Direct enantiomer separation involves the formation of a transient rather than covalent diastereomeric complexation between the chiral selector/discriminator and the analyte (drug enantiomer). In this approach, the subtle energy differences between the reversibly formed noncovalent diastereomeric complexes are exploited for chiral recognition. The direct chromatographic enantiomer separation may be achieved in two different ways, the chiral mobile phase additive and chiral stationary phase mode. [51]

Chiral mobile phase additive (CMPA)

In this approach, an enantiomerically pure compound, the chiral selector, is added to the mobile phase and separation happens on a conventional achiral column. When a mixture of enantiomers is introduced into the chromatographic system, the individual enantiomers form transient diastereomeric complexes with the chiral mobile phase additive. In the chiral mobile phase additive technique, two possible mechanisms may operate: one possibility is that CMPA and the enantiomers may form diastereomers in the mobile phase. Another is that the stationary phase may be coated with the CMPA, leading to diastereomeric interactions with the enantiomeric pairs during chromatographic separation process. It is observed that both the mechanisms may happen depending on the characteristic of the stationary phase and mobile phase employed. [52] Of late this method finds limited application.

Chiral stationary phase (CSP)

In the direct enantiomer separation the most popular approach is use of chiral stationary phases. In this case the site of the chiral selector is on the stationary phase. Stationary phase consist of an inert solid support (usually silica microparticles) on to the surface of which a single enantiomer of a chiral molecule (selector) is either coated/adsorbed or chemically linked and that forms the chiral stationary phase. Commonly used chiral selectors include polysaccharides, proteins, cyclodextrins, etc. An interesting review of chiral stationary phase development and application in chiral analysis appeared in LCGC magazine, 2011. [53]

Chiral recognition

Dalgliesh model 3-Point interaction model.png
Dalgliesh model

Chiral recognition implies the ability of chiral stationery phases to interact differently with mirror-image molecules, leading to their separation. The mechanism of enantiomeric resolution using CSPs is generally attributed to the “three-point" interaction model (fig.1.) between the analyte and the chiral selector in the stationary phase. Also known as the Dalgliesh model. [54] Under this model, for chiral recognition, and hence enantiomeric resolution to happen on a CSP one of the enantiomers of the analyte must be involved in three simultaneous interactions. This means to say the one of enantiomers is able to have a good interaction with the complimentary sites on the chiral selector attached to the CSP. While Its mirror-image partner may only interact at two or one such sites. In the figure, enantiomer (a), has the correct configuration of the ligands (X, Y and Z) for three-point interactions with the complimentary sites (X’, Y’ and Z’) on the CSP, while its mirror image (b) can only interact at one site. The dotted lines (-----) indicate interaction with complimentary sites.

The diastereomeric complexes thus formed will have different energies of interaction. The enantiomer forming the more stable complex will have less energy and stay longer in the stationary phase compared to the less stable complex with higher energy. The success of chiral separation basically depends in manipulating the subtle energy differences between the reversibly formed non-covalent transient diastereomeric complexes. The energy difference reflects the magnitude of enantioselectivity. Mobile phase has a major role in stabilizing the diastereomeric complex and thus in chiral separation. This simplified bimolecular interaction model is a treatment suitable for theoretical purposes. Mobile phase plays a key role in chiral recognition mechanism. Components of MP (such as bulk solvents, modifiers, buffer salts, additives) not only influence the conformational flexibility of CS and CA molecules but also their degree of ionization. The types of interaction involved in the analyte-selector interaction vary depending on the nature of the CSP used. These may include hydrogen bonding, dipole-dipole, π-π, electrostatic, hydrophobic or steric interactions, and inclusion complex formation.

Classical chiral selectors and CSPs

The intense research for development of efficient chiral selectors has resulted in the synthesis of over 1400 CSPs and over 200 CSPs have been commercialized and available in the market. [55] The most commonly employed chiral selectors are categorized and presented in the table.

Classical chiral selectors
Type of CSPChemistryChiral distinction mechanismLoading capacity [56]

mg/g (CSP)

Polymer Polysaccharides H-bonding, dipole-dipole interactions; inclusion ion complexes also play an important role5-150
Proteins Hydrophobic and electrostatic interactions0.1 - 0.2
MacrocyclesNative and

derivatized Cyclodextrins

Inclusion complexes, H-bonding; solute enters the cavities within the CSP to form inclusion complexes0.1 - 0.5
Glycopeptide antibiotics H-bonding; π-π interactions, dipole sacking; steric; hydrophobic pocket0.1 - 0.5
Crown ethers 0.1 - 0.5
Low-molecular weight

scaffolds

Pirkle typeH-bonding; π-π interactions, dipole sacking1-50
Ligand-exchange Coordination complexes to metals0.1 - 0.5

Polysaccharide CSPs

Background

It is surprising to note that In 1980, there was no single chiral stationary phase available in the market for performing chiral chromatography. However, In late 1980s the subject of enantioselective chromatography attracted growing interest, particularly under the drive of the institution of Okamoto in Japan, the teams of Pirkle, and Armstrong in the US, Schurig and König in Germany, Lindner in Austria, and Francotte in Switzerland . [57] The Polysaccharides, amylose and cellulose, form the most abundant chiral polymers on earth. These naturally occurring polysaccharides form basis for an important class of chiral selectors.

Chemistry

Amylose and cellulose cannot be used as such due to poor resolution and difficulty in handling. But the carbamate and benzoate derivatives of these polymers, especially amylose and cellulose, demonstrate excellent properties as chiral selectors for chromatographic separation. A large number of polysaccharide-based CSPs are commercially available for chiral separation. These CSPs showed tremendous chiral recognition capability to resolve a wide range of chiral analytes. Many of these CSPs have been marketed by Daicel Chemical Industries, Ltd., and some of the popular ones are listed in the table.

Popular chiral selectors incorporated in polysaccharide-type Chiral stationary phases
#Adsorbent / Stationary phase descriptionChiral stationary phase (Trade name)
1.Cellulose tris-(3,5-dimethyl phenyl carbamate)Chiralcel OD® (Daicel)
2.Cellulose tris-(4-methyl benzoate )Chiralcel OJ® / Lux® Cellulose-3 (Phenomenex)
3.Amylose tris(3,5-dimethyl phenyl carbamate)Chiralpak AD® (Daicel)
4.Amylose tris(S)-a-methyl benzyl carbamateChiralpak AS® (Daicel)
5.Cellulose tris(3-chloro-4-methylphenylcarbamate)Chiralcel OZ® (Daicel)
6.Amylose tris(5-chloro-2-methylphenylcarbamate)Chiralcel AY® (Daicel)
7.Amylose tris(3-chloro-4-methylphenylcarbamate)Chirlpak AZ® (Daicel)
8.Cellulose tris(4-chloro-3-methylphenylcarbamate)Chiralcel OX® (Daicel)
9.tris (3,5-dimethylphenyl) carbamoyl cellulose selectorRegisCell®
10.tris (3,5-dimethylphenyl) carbamoyl amylose selectorRegisPack®

These CSPs are compatible with NP/RP and SFC and also used for analytical, semi-preparative and preparative separations. Many screening research studies conducted at different labs go to suggest that the four CSPs namely Chiralcel OD, Chiralcel OJ, Chiralpak AD, and Chiralpak As are capable of resolving more than 80% of the chiral separations due to their adaptability and high loading capacity. [58] [59] [60] These four polysaccharide chiral stationary stationary phases are referred to as the "golden four". [61]

Polysaccharide CSPs are prepared with high quality silica support on to which the polymeric chiral selector (amylose/cellulose dr.) is physically coated (coated CSP) or chemically immobilized (immobilized CSP). Separations can be done in normal phase, reversed-phase, and polar organic mode. While working with coated polysaccharide CSP solvent selection should be done with caution. One should not use drastic solvents such as dichloromethane, chloroform, toluene, ethyl acetate, THF; 1,4-dioxane; acetone; DMSO, etc. These so called "non-standard" solvents will dissolve the silica and irreversibly destroy the stationary phase. The limited resistance of these coated phases to many solvents lead to the development of immobilized polysaccharide CSP. The table below presents some of the immobilized CSP commercially available and with the alternates wherever accessible. [62] [63]

Immobilized chiral stationary phases
#Chiral selector/Adsorbent chemistryChiral stationary phase/ Suppliers
Daicel®Phenomenex®Reprosil®
1Amylose tris(3,5-dimethylphenyl)carbamate (as in Chiralpak® AD)Chiralpak® IALux® i-Amylose-1Reprosil® MIA
2Cellulose tris(3,5-dimethylphenyl)carbamate (as in Chiralcel® OD)Chiralcel® IB-----Reprosil® MIB
3Cellulose tris(3,5-dichlorophenyl)carbamateChiralcel® ICLux® i-Cellulose-5Reprosil® MIC
4Amylose tris(3-chlorophenyl)carbamateChiralpak® ID----------
5Amylose tris(3,5-dichlorophenyl)carbamateChiralpak® IE----------
6Amylose tris(3-chloro,4-methylphenyl)carbamateChiralpak® IF----------
7Amylose tris(3-chloro,5-methylphenyl)carbamateChiralpak® IG----------

These immobilized CSP are much more rugged and the "non-standard" solvents can be employed. Thus expanding the choice of co-solvent. The major strength of immobilized CSPs are high solvent versatility in selection of mobile phase composition, enhanced sample solubility, high selectivity, robustness and extended durability, excellent column efficiency, and broad application domain in the resolution of enantiomers. Solvent is a key factor in HPLC MD. More solvents to play with means better sample solubility, Improves resolution, and enables effective chiral method development.

Mechanism

Number of chiral environments are created within the polymer. Cavities are formed between adjacent glucose units, and spaces/channels between polysaccharide chains. These chiral cavities or channels give the chiral discrimination capability to polysaccharide CSPs. The mechanism of Chiral discrimination is not well understood but believed to involve hydrogen bonding and dipole-dipole interaction between the analyte molecule and the ester or carbamate linkage of the CSP.

Application

Some of the applications of these CSPs include the direct chiral analysis of β-adrenergic blockers such as metoprolol [64] and celiprolol, [65] the calcium channel blocker, felodipine [66] and the anticonvulsant agent, ethotoin. [67]

Macrocyclic CSPs

An interesting way of achieving chiral distinction on a CSP is the use of selectors with chiral cavity. These chiral selectors are attached to the stationary phase support material. In this category, there are basically three types of cavity chiral selectors namely cyclodextrins, [68] crown ethers [69] and macrocyclic glycopeptide antibiotics. [70] Among these cyclodextrin based CSP is popular. In this type of CSPs the enantioselective guest-host interaction governs the chiral distinction.

Cyclodextrin-type CSP

Cyclodextrins (CDs) are cyclic oligosaccharides of six, seven, or eight glucose units designated as α, β, and γ cyclodextrins respectively. Depicted in the diagram below. Daniel Armstrong is considered the pioneer of micelle and cyclodextrin-based separations. Cyclodextrins are covalently attached to silica by Armstrong process and provide stable CSPs. [71] The primary hydroxyl groups are used to anchor the CD molecules to the modified silica surface. CDs are chiral because of innate chirality of the building blocks, glucose units. In cyclodextrin the glucose units are α-(1,4)- connected. The shape of CD looks like a shortened cone (see the sketch). The inner surface of the cone forms moderately hydrophobic pocket. The width of the CD-cavity is identified with the quantity of glucose units present. In cyclodextrins, secondary hydroxyl groups (OH-2 and - 3) line the upper rim of the cavity, and an essential 6-hydroxyl group is positioned at the lower rim. The hydroxyl group offer chiral binding points, which appear to be fundamental for enantioselectivity. Apolar glyosidic oxygen makes the pit hydrophobic and guarantees inclusion complexing of the hydrophobic moiety of analytes. Interactions between the polar area of an analyte and secondary hydroxyl groups at the mouth of the pit, joined with the hydrophobic connections inside the pit, give a unique two-point fit and lead to enantioselectivity.

Structure of native cyclodextrins Structure of native cyclodextrins.png
Structure of native cyclodextrins

Selectivity of a cyclodextrin phase is dependent on two key factors namely the size and structure of the analyte since it is based on a simple fit-unfit geometric criteria. An aromatic ring or cycloalkyl ring should be attached near the stereogenic center of the analyte. Substituents at or near the analyte chiral center must be able to interact with the hydroxyl groups at the entrance of the CD cavity through H-bonding. [72] α-Cyclodextrin holds small aromatic molecules, whereas β-cyclodextrin incorporates both naphthyl groups and substituted phenyl groups. The aqueous compatibility of CD and its unique molecular structure make the CD- bonded phase highly suitable for use in chiral HPLC analysis of drugs. One further benefit of CD is that they are generally less expensive than the other CSPs. Some of the major shortcomings of CD CSPs is that it is limited to compounds that can enter into CD cavity, minor structural changes in analyte leads to unpredictable effect on resolution, often poor efficiency and cannot invert elution order.

Sketch of cone shape of cyclodextrin Sketch of cone shape of cyclodextrin.png
Sketch of cone shape of cyclodextrin

Enantiomers of propranolol, metoprolol, chlorpheniramine, verapamil, hexobarbitaI, methadone and much more drugs have been separated using immobilized β-cyclodextrin. [73]

Initially natural CDs have been used as the chiral selector. Later, modified cyclodextrin structures have been prepared by derivatizing the secondary hydroxyl groups present on the CD molecule. [74] [75] Incorporation of these additional functional groups may improve the chiral recognition capability by possibly modifying the chiral pocket and creating extra auxiliary interaction site. This approach enabled to expand the range of target chiral analytes that could be separated. A number of chiral pharmaceuticals has been resolved using derivatized CDs including ibuprofen, suprofen, flurbiprofen from NSAID category and b-blockers like metoprolol and atenolol. [76] A brief list of cyclodextrin-based chiral stationary stationary phases available in the market is furnished in the table below. [77]

Summary of commercially available cyclodextrin-type CSPs
Chiral stationary phase (Brand name)Chiral selector/chemical descriptionMode #Company/ Major distributor
Cyclobond® I 2000Natural β-CyclodextrinRP, POAdvanced Separation Technology (Astec), Whippany, NJ
Cyclobond® IINatural γ-CyclodextrinRP, POAstec
Cyclobond® IIINatural α-CyclodextrinRP, POAstec
Cyclobond® I 2000 ACAcetylated β-CyclodextrinRP, POAstec
Cyclobond® I 2000 SP(S)-Hydroxypropyl β-CyclodextrinRP, POAstec
Cyclobond® I 2000 SN(S)-1(1-napthyl)ethyl carbamoyl-β-CyclodextrinRP, NP, POAstec
Cyclobond® I 2000 RN(R)-1(1-napthyl)ethyl carbamoyl-β-CyclodextrinRP, NP, POAstec
Cyclobond® I 2000 DMP3,5-dimethylphenyl carbamoyl-β-CyclodextrinRP, NP, POAstec
Cyclobond® II ACAcetylated γ-CyclodextrinRP, POAstec
Cyclobond® III ACAcetylated α-CyclodextrinRP, POAstec
ChiraDex®Native α-CyclodextrinRP, POMerck, Germany
ChiraDex® GammaNative γ-CyclodextrinRP, POMerck
Note: # RP, reversed phase; PO, Polar organic; NP, normal phase.

Glycopeptide-type CSP

Armstrong introduced macrocyclic glycopeptides (also known as glycopeptide antibiotics) as a new class of chiral selector for liquid chromatography in 1994. [78] At present, vancomycin, teicoplanin and ristocetin are available under the brand names Chirobiotic V, Chirobiotic T and Chirobiotic R respectively. These cyclic glycopeptides have multiple chiral centers and a cup-like inclusion area to which a floating sugar lid is attached. Similar to protein chiral selectors, the amphoteric cyclic glycopeptides consist of peptide and carbohydrate binding sites leading to possibilities for different modes of interaction beside the formation of inclusion complexation. In this chiral selector the cavities are shallower than that of CDs and hence the interactions are weaker, allows more rapid solute exchange between phases, higher column efficiency. operates in normal phase, reversed-phase and polar organic phase.

The complex structural nature of glycopeptide antibiotic class of CSP has made the understanding of the mechanism of chiral recognition at molecular level tricky. For instance, vancomycin molecule has 18 stereogenic centers in the molecule and offers a complex cyclodextrin-like chiral environment. In comparison to a single basket of cyclodextrins, vancomycin consists of three baskets, resulting in a more complex inclusion of appropriate guest molecules. The attractive forces include π-π interactions, hydrogen bonding, ionic interactions, and dipole stacking. A carboxylic acid and a secondary amine group located on the rim of the cup and can participate in ionic interactions. Vancomycin stationary phases operate in reversed, normal and polar organic phase modes.

Wide range of chiral analysis has been done using chirobiotic CSPs. [79] The antihypertensive drugs viz. oxprenolol, pindolol, propranolol have been separated using vancomycin and teicoplanin chirobiotic CSPS. The NSAID drugs ketoprofen and ibuprofen has been separated using ristocetin CSP.

Crown ether-type CSP

Crown ethers, like cyclodextrin-type CSPs contain a chiral cavity. Crown ethers are immobilized on the silica surface to form chiral stationary phase. Crown ethers contain oxygen atoms within the cavity. The cyclic structure that contains apolar ethylene groups between oxygen forms hydrophobic inner cavity. Cram et al., introduced CSP based on chiral crown ethers and accomplished separation of amino acid. [80] The crucial chiral recognition principle underlying crown ether-based enantiomer separation is based on the formation of numerous hydrogen bonds between the protonated primary amino group of the analyte and the ether oxygens of the crown structure. [81] This structural requirement confines the application of crown ether-type CSPs to chiral compounds having primary amino groups adjoining the chiral centers, such as amino acids, amino acid derivatives. Progress in the field of crown ether-type CSPs have been reviewed. [82]

Protein-type CSP

Proteins are complex, high-molecular weight biopolymers. They are inherently chiral being composed of L-amino acids and possess ordered 3D-structure. They are known to bind/interact stereoselectively with small molecules reversibly, making them extremely versatile CSPs for chiral separation of drug molecules. Hermansson made use of this property to develop number of CSPs by immobilizing proteins on to silica surface. [83] They operate under reverse phase mode (phosphate buffer and organic modifiers).

Protein polymer remains in twisted form because of the different intramolecular bonding. These bonding create different type of chiral loops/grooves present in the protein molecule. Separation mechanism of proteins depends on unique combination of hydrophobic and polar interactions by which the analytes are oriented to chiral surfaces. H-bonding and charge transfer may also contribute to enantioselectivity. The mechanism of chiral distinction by proteins is mostly not well established due to their complex nature. Several proteins based CSP have been employed for chiral drug analysis including α-acid glycoprotein (enantiopac; chiral-AGP), ovomucoid protein (Ultron ES DVM), human serum albumin (HSA). [84] α-AGP CSP (chiral AGP), has been employed for the quantification of atenolol enantiomers in biological matrices, [85] for pharmacokinetic investigation of racemic metoprolol. [86] The major weakness of protein based CSPs include low loading capacity, protein phases are expensive, extremely fragile, delicate to handle, very low column efficiency, cannot invert elution order.

Pirkle-type CSP

Pirkle and co-workers pioneered the development of a variety of CSPs based on charge-transfer complexation and simultaneous hydrogen bonding. [87] [88] [89] These phases are also referred to as Brush-type CSPs. The Pirkle phases are based on aromatic π-acid (3,5-dinitrobenzoyI ring) and π- basic (naphthalene) derivative. In addition to π-π interaction sites, they have hydrogen-bonding and dipole-dipole interaction sites provided by an amide, urea or ester functionality. Strong three-point interaction, according to Dalgleish's model, enables enantioseparation. These phases are classified into π-electron-acceptor, π-electron-donor or π-electron acceptor-donor phase.

A number of Pirkle-type CSPs are commercially available. They are used most often in the normal phase mode. The ionic form of the DNPBG (3,5-dinitrobenzoyl-phenylglycine) CSP has been successfully employed to achieve separation of racemic propranolol in biological fluid. Many compounds of pharmaceutical interest including enantiomers of naproxen and metoprolol has been separated using Pirkle CSP. [90] [91]

Novel chiral selectors and CSPs

During the last couple of years there has been developments of CSPs based on novel chiral selectors viz. chitosan derivatives, cylofructan derivatives [92] and chiral porous materials for HPLC chiral separation. [93]

Chitosan derivatives based CSP


Cyclofructan derivatives based CSP


Chiral porous materials based CSP

See also

Related Research Articles

In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent called the mobile phase, which carries it through a system on which a material called the stationary phase is fixed. Because the different constituents of the mixture tend to have different affinities for the stationary phase and are retained for different lengths of time depending on their interactions with its surface sites, the constituents travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.

<span class="mw-page-title-main">High-performance liquid chromatography</span> Technique in analytical chemistry

High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify specific components in mixtures. The mixtures can originate from food, chemicals, pharmaceuticals, biological, environmental and agriculture, etc, which have been dissolved into liquid solutions.

Micellar electrokinetic chromatography (MEKC) is a chromatography technique used in analytical chemistry. It is a modification of capillary electrophoresis (CE), extending its functionality to neutral analytes, where the samples are separated by differential partitioning between micelles and a surrounding aqueous buffer solution.

<span class="mw-page-title-main">Enantioselective synthesis</span> Chemical reaction(s) which favor one chiral isomer over another

Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric products in unequal amounts."

<span class="mw-page-title-main">Solid-phase extraction</span> Process to separate compounds by properties

Solid-phase extraction (SPE) is a solid-liquid extractive technique, by which compounds that are dissolved or suspended in a liquid mixture are separated, isolated or purified, from other compounds in this mixture, according to their physical and chemical properties. Analytical laboratories use solid phase extraction to concentrate and purify samples for analysis. Solid phase extraction can be used to isolate analytes of interest from a wide variety of matrices, including urine, blood, water, beverages, soil, and animal tissue.

Chiral column chromatography is a variant of column chromatography that is employed for the separation of chiral compounds, i.e. enantiomers, in mixtures such as racemates or related compounds. The chiral stationary phase (CSP) is made of a support, usually silica based, on which a chiral reagent or a macromolecule with numerous chiral centers is bonded or immobilized.

<span class="mw-page-title-main">Chiral derivatizing agent</span> Reagent for converting a chemical compound to a chiral derivative

In analytical chemistry, A chiral derivatizing agent (CDA), also known as a chiral resolving reagent, is a derivatization reagent that is a chiral auxiliary used to convert a mixture of enantiomers into diastereomers in order to analyze the quantities of each enantiomer present and determine the optical purity of a sample. Analysis can be conducted by spectroscopy or by chromatography. Some analytical techniques such as HPLC and NMR, in their most commons forms, cannot distinguish enantiomers within a sample, but can distinguish diastereomers. Therefore, converting a mixture of enantiomers to a corresponding mixture of diastereomers can allow analysis. The use of chiral derivatizing agents has declined with the popularization of chiral HPLC. Besides analysis, chiral derivatization is also used for chiral resolution, the actual physical separation of the enantiomers.

Reversed-phase Liquid chromatography (RP-LC) is a mode of liquid chromatography in which non-polar stationary phase and polar mobile phases are used for the separation of organic compounds. The vast majority of separations and analyses using High Performance Liquid Chromatography-HPLC in recent years are done using the Reversed Phase mode. In the Reversed Phase mode, the sample components are retained in the system, the more hydrophobic they are. 

Mixed-mode chromatography (MMC), or multimodal chromatography, refers to chromatographic methods that utilize more than one form of interaction between the stationary phase and analytes in order to achieve their separation. What is distinct from conventional single-mode chromatography is that the secondary interactions in MMC cannot be too weak, and thus they also contribute to the retention of the solutes.

<span class="mw-page-title-main">Hydrophilic interaction chromatography</span> Type of chromatography

Hydrophilic interaction chromatography is a variant of normal phase liquid chromatography that partly overlaps with other chromatographic applications such as ion chromatography and reversed phase liquid chromatography. HILIC uses hydrophilic stationary phases with reversed-phase type eluents. The name was suggested by Andrew Alpert in his 1990 paper on the subject. He described the chromatographic mechanism for it as liquid-liquid partition chromatography where analytes elute in order of increasing polarity, a conclusion supported by a review and re-evaluation of published data.

Chiral resolution, or enantiomeric resolution, is a process in stereochemistry for the separation of racemic mixture into their enantiomers. It is an important tool in the production of optically active compounds, including drugs. Another term with the same meaning is optical resolution.

Supercritical fluid chromatography (SFC) is a form of normal phase chromatography that uses a supercritical fluid such as carbon dioxide as the mobile phase. It is used for the analysis and purification of low to moderate molecular weight, thermally labile molecules and can also be used for the separation of chiral compounds. Principles are similar to those of high performance liquid chromatography (HPLC), however SFC typically utilizes carbon dioxide as the mobile phase; therefore the entire chromatographic flow path must be pressurized. Because the supercritical phase represents a state whereby bulk liquid and gas properties converge, supercritical fluid chromatography is sometimes called convergence chromatography. The idea of liquid and gas properties convergence was first envisioned by Giddings.

Micellar liquid chromatography (MLC) is a form of reversed phase liquid chromatography that uses an aqueous micellar solutions as the mobile phase.

Electrochromatography is a chemical separation technique in analytical chemistry, biochemistry and molecular biology used to resolve and separate mostly large biomolecules such as proteins. It is a combination of size exclusion chromatography and gel electrophoresis. These separation mechanisms operate essentially in superposition along the length of a gel filtration column to which an axial electric field gradient has been added. The molecules are separated by size due to the gel filtration mechanism and by electrophoretic mobility due to the gel electrophoresis mechanism. Additionally there are secondary chromatographic solute retention mechanisms.

An enantiopure drug is a pharmaceutical that is available in one specific enantiomeric form. Most biological molecules are present in only one of many chiral forms, so different enantiomers of a chiral drug molecule bind differently to target receptors. Chirality can be observed when the geometric properties of an object is not superimposable with its mirror image. Two forms of a molecule are formed from a chiral carbon, these two forms are called enantiomers. One enantiomer of a drug may have a desired beneficial effect while the other may cause serious and undesired side effects, or sometimes even beneficial but entirely different effects. The desired enantiomer is known as an eutomer while the undesired enantiomer is known as the distomer. When equal amounts of both enantiomers are found in a mixture, the mixture is known as a racemic mixture. If a mixture for a drug does not have a 1:1 ratio of its enantiomers it is a candidate for an enantiopure drug. Advances in industrial chemical processes have made it economical for pharmaceutical manufacturers to take drugs that were originally marketed as a racemic mixture and market the individual enantiomers, either by specifically manufacturing the desired enantiomer or by resolving a racemic mixture. On a case-by-case basis, the U.S. Food and Drug Administration (FDA) has allowed single enantiomers of certain drugs to be marketed under a different name than the racemic mixture. Also case-by-case, the United States Patent Office has granted patents for single enantiomers of certain drugs. The regulatory review for marketing approval and for patenting is independent, and differs country by country.

<span class="mw-page-title-main">Capillary electrochromatography</span> Method of separating components of a mixture via electro-osmosis

In chemical analysis, capillary electrochromatography (CEC) is a chromatographic technique in which the mobile phase is driven through the chromatographic bed by electro-osmosis. Capillary electrochromatography is a combination of two analytical techniques, high-performance liquid chromatography and capillary electrophoresis. Capillary electrophoresis aims to separate analytes on the basis of their mass-to-charge ratio by passing a high voltage across ends of a capillary tube, which is filled with the analyte. High-performance liquid chromatography separates analytes by passing them, under high pressure, through a column filled with stationary phase. The interactions between the analytes and the stationary phase and mobile phase lead to the separation of the analytes. In capillary electrochromatography capillaries, packed with HPLC stationary phase, are subjected to a high voltage. Separation is achieved by electrophoretic migration of solutes and differential partitioning.

<span class="mw-page-title-main">Emanuel Gil-Av</span> Russian-Israeli chemist

Emanuel Gil-Av (Zimkin) was an Israeli chemist. The main emphasis of his work constituted chiral chromatography for the analytical separation of enantiomers.

Chemical compounds that come as mirror-image pairs are referred to by chemists as chiral or handed molecules. Each twin is called an enantiomer. Drugs that exhibit handedness are referred to as chiral drugs. Chiral drugs that are equimolar (1:1) mixture of enantiomers are called racemic drugs and these are obviously devoid of optical rotation. The most commonly encountered stereogenic unit, that confers chirality to drug molecules are stereogenic center. Stereogenic center can be due to the presence of tetrahedral tetra coordinate atoms (C,N,P) and pyramidal tricoordinate atoms (N,S). The word chiral describes the three-dimensional architecture of the molecule and does not reveal the stereochemical composition. Hence "chiral drug" does not say whether the drug is racemic, single enantiomer or some other combination of stereoisomers. To resolve this issue Joseph Gal introduced a new term called unichiral. Unichiral indicates that the stereochemical composition of a chiral drug is homogenous consisting of a single enantiomer.

Chiral inversion is the process of conversion of one enantiomer of a chiral molecule to its mirror-image version with no other change in the molecule.

<span class="mw-page-title-main">Chiral thin-layer chromatography</span>

Chiral thin-layer chromatography is a variant of liquid chromatography that is employed for the separation of enantiomers. It is necessary to use either

References

  1. Chiral Analysis. Elsevier. 2018. doi:10.1016/c2017-0-00050-2. ISBN   978-0-444-64027-7.
  2. Chen, LiZhu; Zhu, DeQiu; Xiang, Ping (2021). "Recent advances in chiral analysis for biosamples in clinical research and forensic toxicology". Bioanalysis. 13 (6): 493–511. doi:10.4155/bio-2020-0330. ISSN   1757-6180. PMID   33719527. S2CID   232229593.
  3. Chiral analysis. Kenneth W. Busch, Marianna A. Busch. Amsterdam: Elsevier. 2006. ISBN   978-0-444-51669-5. OCLC   162580325.{{cite book}}: CS1 maint: others (link)
  4. Williams, Reed C; Edwards, Janet F; Joshi, Amita S; Aubry, Ann-Francoise (2001). "Chiral analysis of drug substance in clinical plasma extracts using achiral HPLC with circular dichroism detection". Journal of Pharmaceutical and Biomedical Analysis. 25 (3–4): 501–509. doi:10.1016/s0731-7085(00)00527-6. ISSN   0731-7085. PMID   11377030.
  5. Porter, W. H. (1991-01-01). "Resolution of chiral drugs". Pure and Applied Chemistry. 63 (8): 1119–1122. doi: 10.1351/pac199163081119 . ISSN   1365-3075. S2CID   35860450.
  6. Wozniak, Timothy J.; Bopp, Ronald J.; Jensen, Eric C. (1991). "Chiral drugs: An industrial analytical perspective". Journal of Pharmaceutical and Biomedical Analysis. 9 (5): 363–382. doi:10.1016/0731-7085(91)80160-b. ISSN   0731-7085. PMID   1932271.
  7. Doyle, Thomas D (1991). "Analytical criteria for chiral High-performance liquid chromatography". In Ahuja, Satinder (ed.). Chiral separations by liquid chromatography. USA: American Chemical Society. pp. 27–42. ISBN   0-8412-2116-2.
  8. Pasutto, Franco M. (1992). "Mirror Images: The Analysis of Pharmaceutical Enantiomers". The Journal of Clinical Pharmacology. 32 (10): 917–924. doi:10.1002/j.1552-4604.1992.tb04639.x. ISSN   0091-2700. PMID   1447399. S2CID   34481858.
  9. Cancelliere, Giovanna; D’Acquarica, Ilaria; Gasparrini, Francesco; Misiti, Domenico; Villani, Claudio (1999). "Synthesis and applications of novel, highly efficient HPLC chiral stationary phases: a chiral dimension in drug research analysis". Pharmaceutical Science & Technology Today. 2 (12): 484–492. doi:10.1016/s1461-5347(99)00218-7. ISSN   1461-5347. PMID   10603466.
  10. "Gurus of Chiral Separations". The Analytical Scientist. 20 January 2015. Retrieved 2023-01-17.
  11. Francotte, Eric; Lindner, Wolfgang (2006). Chirality in drug research. Eric Francotte, W. Lindner. Weinheim: Wiley-VCH. p. 205. ISBN   978-3-527-60943-7. OCLC   163578005.
  12. Ariëns, E. J. (1984). "Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology". European Journal of Clinical Pharmacology. 26 (6): 663–668. doi:10.1007/bf00541922. ISSN   0031-6970. PMID   6092093. S2CID   30916093.
  13. Jamali, F.; Mehvar, R.; Pasutto, F.M. (1989). "Enantioselective Aspects of Drug Action and Disposition: Therapeutic Pitfalls". Journal of Pharmaceutical Sciences. 78 (9): 695–715. doi:10.1002/jps.2600780902. ISSN   0022-3549. PMID   2685226.
  14. Weissinger, Judi (1989). "Considerations in the Development of Stereoisomeric Drugs: FDA Viewpoint". Drug Information Journal. 23 (4): 663–667. doi:10.1177/009286158902300420. ISSN   0092-8615. S2CID   72571037.
  15. Gross, M (1991). "Development of chiral drugs in an evolving regulatory environment". Regulatory Affairs. 3: 483–493.
  16. De Camp, Wilson H. (1989). "Letter to the editor". Chirality. 1 (2): 97–98. doi:10.1002/chir.530010202. ISSN   0899-0042. PMID   2642047.
  17. Ariëns, Everardus J. (1986). "Stereochemistry: A source of problems in medicinal chemistry". Medicinal Research Reviews. 6 (4): 451–466. doi:10.1002/med.2610060404. ISSN   0198-6325. PMID   3534485. S2CID   36115871.
  18. Sheldon, Roger, A (1993). Chirotechnology - Industrial synthesis of optically active compounds. New York: Marcel Dekker, Inc., New York. pp. 73–382. ISBN   0-8247-9143-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  19. Agranat, Israel; Caner, Hava; Caldwell, John (2002). "Putting chirality to work: the strategy of chiral switches". Nature Reviews Drug Discovery. 1 (10): 753–768. doi:10.1038/nrd915. ISSN   1474-1776. PMID   12360254. S2CID   1543301.
  20. Nowak, Richard (2003). "Single-isomer levalbuterol: A review of the acute data". Current Allergy and Asthma Reports. 3 (2): 172–178. doi:10.1007/s11882-003-0031-8. ISSN   1529-7322. PMID   12562558. S2CID   46090018.
  21. Tucker, Geoffrey T (2000). "Chiral switches". The Lancet. 355 (9209): 1085–1087. doi:10.1016/s0140-6736(00)02047-x. ISSN   0140-6736. PMID   10744105. S2CID   30715334.
  22. Gristwood, Robert W. (2002). "Cardiac and CNS Toxicity of Levobupivacaine". Drug Safety. 25 (3): 153–163. doi:10.2165/00002018-200225030-00002. ISSN   0114-5916. PMID   11945112. S2CID   71466303.
  23. Iacob, Bogdan-Cezar (2015). Chiral analysis of beta-blockers (1. Aufl ed.). Saarbrücken. ISBN   978-3-659-64269-2. OCLC   1185782844.{{cite book}}: CS1 maint: location missing publisher (link)
  24. Ribeiro, Cláudia; Santos, Cristiana; Gonçalves, Valter; Ramos, Ana; Afonso, Carlos; Tiritan, Maria (2018-01-28). "Chiral Drug Analysis in Forensic Chemistry: An Overview". Molecules. 23 (2): 262. doi: 10.3390/molecules23020262 . ISSN   1420-3049. PMC   6017579 . PMID   29382109.
  25. Chen, LiZhu; Zhu, DeQiu; Xiang, Ping (2021). "Recent advances in chiral analysis for biosamples in clinical research and forensic toxicology". Bioanalysis. 13 (6): 493–511. doi:10.4155/bio-2020-0330. ISSN   1757-6180. PMID   33719527. S2CID   232229593.
  26. Leslie S. Ettre, Emanuel Gil-Av and the Separation of Enantiomers on Chiral Stationary Phases by Chromatography, LCGC North America-04-01-2007, Volume 25, Issue 4, Pages: 382–395
  27. Claudio Brunelli, Supercritical Fluid Chromatography in the Pharmaceutical Industry: Implementation in Development and Quality Control, LC GC, Special Issues, Special Issues-10-02-2018, Volume 31, Issue 10, Pages: 40–46
  28. Kate Mosford, Chiral Chromatography in antiepileptic drug development and epilepsy therapy, LC GC, The Column-04-16-2018, Volume 14, Issue 4, April 16, 2018
  29. Current Trends in chiral chromatography, LC GC, The Column-04-08-2014, Volume 10, Issue 6, April 8, 2014.
  30. Emerging Trends in Pharmaceutical Analysis, LC GC, E-Separation Solutions-11-25-2014, Volume 0, Issue 0
  31. Francotte, Eric (October 1, 2016). "Contemporary Analysis of Chiral Molecules". LC GC Magazine. 29 (10–03–2016): 31–37.
  32. Bougas, Lykourgos; Byron, Joseph; Budker, Dmitry; Williams, Jonathan (2022-06-03). "Absolute optical chiral analysis using cavity-enhanced polarimetry". Science Advances. 8 (22): eabm3749. Bibcode:2022SciA....8M3749B. doi:10.1126/sciadv.abm3749. ISSN   2375-2548. PMC   9166628 . PMID   35658039.
  33. Eric Francotte, Contemporary Analysis of Chiral Molecules, LC GC, Special Issue-10-03-2016, Volume 29, Issue 10, Pages: 31–37
  34. Eliel, Ernest L. (1997). <428::aid-chir5>3.0.co;2-1 "Infelicitous stereochemical nomenclature". Chirality. 9 (5–6): 428–430. doi:10.1002/(sici)1520-636x(1997)9:5/6<428::aid-chir5>3.0.co;2-1. ISSN   0899-0042.
  35. Chankvetadze, Bezhan (1997). Capillary electrophoresis in chiral analysis. Chichester: John Wiley & Sons, USA. ISBN   0-585-26760-X.
  36. Beesley, Thomas E; P.W. Scott, Raymond (2001-05-30). John Wiley & Sons, Ltd (ed.). Chiral chromatography. USA: Wiley. doi:10.1002/047001590x. ISBN   978-0-470-01617-6.
  37. Allenmark, S. G (1988). "Chromatographic enantioseparation : methods and applications". Flavour and Fragrance Journal. Chichester: Ellis Horwood, Chichester. 4 (1): 45. doi:10.1002/ffj.2730040111.
  38. Snyder, L.R; Kirkland, J.J.; Glajch (1997). Practical HPLC method development (2nd ed.). Wiley-Interscience: J.L. pp. 537–613. ISBN   0-471-00703-X.
  39. Souter, RW (1985). Chromatographic Separation of Stereoisomers. Florida: CRC Press, Boca Raton.
  40. Zief, M; Crane, L.J., eds. (1988). Chromatographic Chiral Separations. New York: Marcel Dekker, New York.
  41. Maier, Norbert M; Linder, Wolfgang (2006). Francotte, Eric; Linder, Wolfgang (eds.). Chirality in drug research. Germany: Wiley-VCH Verlag GmbH & Co. pp. 189–260. ISBN   3-527-31076-2.
  42. Ahuja, Satinder (2011). Chiral separation methods for pharmaceutical and biotechnology products. New Jersey: John Wiley & Sons, Inc., New Jersey. ISBN   978-0-470-40691-5.
  43. Wozniak, Timothy J.; Bopp, Ronald J.; Jensen, Eric C. (1991). "Chiral drugs: An industrial analytical perspective". Journal of Pharmaceutical and Biomedical Analysis. 9 (5): 363–382. doi:10.1016/0731-7085(91)80160-b. ISSN   0731-7085. PMID   1932271.
  44. Yanan He, Chiral analysis in drug discovery, Innovations in Pharmaceutical Technology, (magazine), 19-23, December, 2010
  45. Chankvetadze, Bezhan (1997). Capillary electrophoresis in chiral analysis. Chichester: John Wiley. ISBN   0-585-26760-X. OCLC   45729067.
  46. Lunn, G; Hellwig, L.C (1998). Handbook of Derivatization Reaction for HPLC. New York: Wiley- lnterscience, New York. ISBN   978-0-471-23889-8.
  47. Linder, W (1988). "Indirect separation of enantiomers by liquid chromatography". Chromatographic Science Series. 40: 91–130.
  48. Sun, Xian Xiang; Sun, Ling Zhi; Aboul-Enein, Hassan Y. (2001). "Chiral derivatization reagents for drug enantioseparation by high-performance liquid chromatography based upon pre-column derivatization and formation of diastereomers: enantioselectivity and related structure". Biomedical Chromatography. 15 (2): 116–132. doi:10.1002/bmc.41. ISSN   0269-3879. PMID   11268052.
  49. Srinivas, Nuggehally R. (2004). "Evaluation of experimental strategies for the development of chiral chromatographic methods based on diastereomer formation". Biomedical Chromatography. 18 (4): 207–233. doi:10.1002/bmc.352. ISSN   0269-3879. PMID   15162384.
  50. Haginaka, Jun (2002). "Pharmaceutical and biomedical applications of enantioseparations using liquid chromatographic techniques". Journal of Pharmaceutical and Biomedical Analysis. 27 (3–4): 357–372. doi:10.1016/s0731-7085(01)00652-5. ISSN   0731-7085. PMID   11755739.
  51. Snyder, Lloyd R. (1997). Practical HPLC method development. J. J. Kirkland, Joseph L. Glajch (2nd ed.). New York: Wiley. pp. 537–613. ISBN   0-585-30111-5.
  52. Pettersson, C (1989). Krustulovic, A.M. (ed.). Chiral separations by HPLC applications to pharmaceutical compound. Chinchester: Ellis Horwood, Chichester. pp. 124–146.
  53. Thomas E. Beesley, Review of Chiral Stationary Phase Development and Chiral Applications, LCGC Europe, 05-01-2011, Volume 24, Issue 5, Pages: 270–276
  54. Dalgliesh, C. E. (1952). "756. The optical resolution of aromatic amino-acids on paper chromatograms". Journal of the Chemical Society (Resumed): 3940–3942. doi:10.1039/jr9520003940. ISSN   0368-1769.
  55. Chirality in drug research. Eric Francotte, W. Lindner. Weinheim: Wiley-VCH. 2006. p. 205. ISBN   978-3-527-60943-7. OCLC   163578005.{{cite book}}: CS1 maint: others (link)
  56. Zhang, Yingru; Wu, Dauh-Rurng; Wang-Iverson, David B.; Tymiak, Adrienne A. (2005). "Enantioselective chromatography in drug discovery". Drug Discovery Today. 10 (8): 571–577. doi:10.1016/s1359-6446(05)03407-0. ISSN   1359-6446. PMID   15837600.
  57. Francotte, Eric R. (2017-08-09). "Polysaccharide Derivatives as Unique Chiral Selectors for Enantioselective Chromatography". CHIMIA International Journal for Chemistry. 71 (7): 430–450. doi: 10.2533/chimia.2017.430 . ISSN   0009-4293. PMID   28779767.
  58. Borman, Phil; Boughtflower, Bob; Cattanach, Kaye; Crane, Kathy; Freebairn, Keith; Jonas, Greg; Mutton, Ian; Patel, Asha; Sanders, Matt; Thompson, Duncan (2003). "Comparative performances of selected chiral HPLC, SFC, and CE systems with a chemically diverse sample set". Chirality. 15 (S1): S1–S12. doi:10.1002/chir.10260. ISSN   0899-0042. PMID   12884369.
  59. Perrin, C; Matthijs, N; Mangelings, D; Granier-Loyaux, C; Maftouh, M; Massart, D.L; Vander Heyden, Y (2002). "Screening approach for chiral separation of pharmaceuticals". Journal of Chromatography A. 966 (1–2): 119–134. doi:10.1016/s0021-9673(02)00746-x. ISSN   0021-9673. PMID   12214686.
  60. Norbert M. Maier and Wolfgang Linder (2006). Chirality in drug research. Eric Francotte, W. Lindner. Weinheim: Wiley-VCH. p. 209. ISBN   3-527-31076-2. OCLC   163578005.
  61. Speybrouck, David; Lipka, Emmanuelle (2016). "Preparative supercritical fluid chromatography: A powerful tool for chiral separations". Journal of Chromatography A. 1467: 33–55. doi:10.1016/j.chroma.2016.07.050. PMID   27524302.
  62. Product lists, Daicel chiral technologies, Inc. 2020.
  63. "Polysaccharide chiral columns". 2021.
  64. Straka, Robert J.; Johnson, Kjel A.; Marshall, Peter S.; Remmel, Rory P. (1990). "Analysis of metoprolol enantiomers in human serum by liquid chromatography on a cellulose-based chiral stationary phase". Journal of Chromatography B: Biomedical Sciences and Applications. 530 (1): 83–93. doi:10.1016/s0378-4347(00)82305-1. ISSN   0378-4347. PMID   2277122.
  65. Hartmann, C.; Krauss, D.; Spahn, H.; Mutschler, E. (1989). "Simultaneous determination of (R)- and (S)-celiprolol in human plasma and urine: High-performance liquid chromatographic assay on a chiral stationary phase with fluorimetric detection". Journal of Chromatography B: Biomedical Sciences and Applications. 496 (2): 387–396. doi:10.1016/s0378-4347(00)82586-4. ISSN   0378-4347. PMID   2575621.
  66. Soons, P.A.; Roosemalen, M.C.M.; Breimer, D.D. (1990). "Enantioselective determination of felodipine and other chiral dihydropyridine calcium entry blockers in human plasma". Journal of Chromatography B: Biomedical Sciences and Applications. 528 (2): 343–356. doi:10.1016/s0378-4347(00)82393-2. ISSN   0378-4347. PMID   2384574.
  67. Inotsume, Nobuo; Fujii, Junko; Honda, Mikiko; Nakano, Masahiro; Higashi, Akimasa; Matsuda, Ichiro (1988). "Stereoselective analysis of the enantiomers of ethotoin in human serum using chiral stationary phase liquid chromatography and gas chromatography—mass spectrometry". Journal of Chromatography B: Biomedical Sciences and Applications. 428 (2): 402–407. doi:10.1016/s0378-4347(00)83935-3. ISSN   0378-4347. PMID   2905704.
  68. Cyclobond Handbook. Astec, Whippany, New Jersey. 1992.
  69. Shinbo, Toshio; Yamaguchi, Tomohiko; Nishimura, Koichiro; Sugiura, Masaaki (1987). "Chromatographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings". Journal of Chromatography A. 405: 145–153. doi:10.1016/s0021-9673(01)81756-8. ISSN   0021-9673. PMID   3693463.
  70. Armstrong, Daniel W.; Tang, Yubing.; Chen, Shushi.; Zhou, Yiwen.; Bagwill, Christina.; Chen, Jing-Ran. (1994-04-01). "Macrocyclic Antibiotics as a New Class of Chiral Selectors for Liquid Chromatography". Analytical Chemistry. 66 (9): 1473–1484. doi:10.1021/ac00081a019. ISSN   0003-2700.
  71. Ward, TJ and Armstrong, DW (1986). "Improved cyclodextrin chiral phases: A comparison and review". J. Liq. Chromatogr. 9 (2–3): 407–423. doi:10.1080/01483918608076644.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  72. Cyclobond Handbook. New Jersey: Astec, Whippany. 1992.
  73. Armstrong, D.; Ward, T.; Armstrong, R.; Beesley, T. (1986-05-30). "Separation of drug stereoisomers by the formation of beta-cyclodextrin inclusion complexes". Science. 232 (4754): 1132–1135. Bibcode:1986Sci...232.1132A. doi:10.1126/science.3704640. ISSN   0036-8075. PMID   3704640.
  74. Amstrong, D.W; Chang, D.V; Lee, S.H. (1991). "(R)-and (S)-Naphthylethylcarbamate-substituted β-cyclo-dextrin bonded stationary phases for the reversed-phase liquid chromatographic separation of enantiomers". J. Chromatogr. 539: 83–90. doi:10.1016/S0021-9673(01)95362-2.
  75. User's Guide for Chiral Phase Columns. J.T. Baker, Inc. Phillipsburg, NJ. 1992.
  76. Armstrong, Daniel W.; Zhang, Bo (2001). "Product Review: Chiral Stationary Phases for HPLC". Analytical Chemistry. 73 (19): 557 A–561 A. doi: 10.1021/ac012526n . ISSN   0003-2700.
  77. Mitchell, Clifford R.; Armstrong, Daniel W. (2004), "Cyclodextrin-Based Chiral Stationary Phases for Liquid Chromatography: A Twenty-Year Overview ", Chiral Separations, New Jersey: Humana Press, vol. 243, p. 68, doi:10.1385/1-59259-648-7:061, ISBN   1-58829-150-2, PMID   14970618
  78. Armstrong, Daniel W.; Tang, Yubing.; Chen, Shushi.; Zhou, Yiwen.; Bagwill, Christina.; Chen, Jing-Ran. (1994-04-01). "Macrocyclic Antibiotics as a New Class of Chiral Selectors for Liquid Chromatography". Analytical Chemistry. 66 (9): 1473–1484. doi:10.1021/ac00081a019. ISSN   0003-2700.
  79. Gübitz, Gerald; Schmid, Martin G (2004). "Enantiomeric Separations by HPLC Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview". In Tom Ling Xiao and Daniel W. Armstrong (ed.). Chiral Separations Methods and Protocols. New Jersey: Human Press, New Jersey. pp. 113–171. ISBN   1-58829-150-2.
  80. Sousa, Lynn R.; Sogah, G. D. Y.; Hoffman, Dale H.; Cram, Donald J. (1978). "Host-guest complexation. 12. Total optical resolution of amine and amino ester salts by chromatography". Journal of the American Chemical Society. 100 (14): 4569–4576. doi:10.1021/ja00482a041. ISSN   0002-7863.
  81. Machida, Yoshio; Nishi, Hiroyuki; Nakamura, Kouji (1999). <173::aid-chir1>3.0.co;2-p "Crystallographic studies for the chiral recognition of the novel chiral stationary phase derived from (+)-(R)-18-crown-6 tetracarboxylic acid". Chirality. 11 (3): 173–178. doi:10.1002/(sici)1520-636x(1999)11:3<173::aid-chir1>3.0.co;2-p. ISSN   0899-0042.
  82. Hyun, Myung Ho (2003-03-01). "Characterization of liquid chromatographic chiral separation on chiral crown ether stationary phases". Journal of Separation Science. 26 (3–4): 242–250. doi:10.1002/jssc.200390030. ISSN   1615-9306.
  83. Hermansson, Jörgen (1983). "Direct liquid chromatographic resolution of racemic drugs using α1-acid glycoprotein as the chiral stationary phase". Journal of Chromatography A. 269: 71–80. doi:10.1016/s0021-9673(01)90787-3. ISSN   0021-9673.
  84. Narayanan, Sunanda R. (1992). "Immobilized proteins as chromatographic supports for chiral resolution". Journal of Pharmaceutical and Biomedical Analysis. 10 (4): 251–262. doi:10.1016/0731-7085(92)80037-n. ISSN   0731-7085. PMID   1420455.
  85. Enquist, M; Hermansson, J (1989). "Separation and quantitation of (R)- and (S)-atenolol in human plasma and urine using an ?1-AGP column". Chirality. 1 (3): 209–215. doi:10.1002/chir.530010306. ISSN   0899-0042. PMID   2642050.
  86. Persson, B.-A.; Balme´r, K.; Lagerstro¨m, P.-O.; Schill, G. (1990). "Enantioselective determination of metoprolol in plasma by liquid chromatography on a silica-bonded α 1-acid glycoprotein column". Journal of Chromatography A. 500: 629–636. doi:10.1016/s0021-9673(00)96097-7. ISSN   0021-9673. PMID   2329154.
  87. Pirkle, W. H.; House, D. W. (1979). "Chiral high-performance liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans". The Journal of Organic Chemistry. 44 (12): 1957–1960. doi:10.1021/jo01326a014. ISSN   0022-3263.
  88. Pirkle, W.H.; Mahler, George S.; Pochapsky, Thomas C.; Hyun, Myung Ho (1987). "Direct chromatographic separation of enantiomeric diol derivatives". Journal of Chromatography A. 388: 307–314. doi:10.1016/s0021-9673(01)94492-9. ISSN   0021-9673.
  89. Pirkle, WH; Pochapsky, TC (1989). "Considerations of chiral recognitions relevant to the liquid chromatographic separation of enantiomers". Chem. Rev. 89 (2): 347–362. doi:10.1021/cr00092a006.
  90. Pirkle, W.H.; Burke, J.A. (1991). "Chiral stationary phase designed for β-blockers". Journal of Chromatography A. 557 (1–2): 173–185. doi:10.1016/s0021-9673(01)87131-4. ISSN   0021-9673. PMID   1683876.
  91. Regis Chemical Company brochure, Regis Technologies, Inc. Morton Grove, IL. 1993.
  92. Aboul‐Enein, Hassan Y.; Kannappan, Valliappan; Kanthiah, Selvakumar (2022). "Impact of cyclofructan derivatives as efficient chiral selector in chiral analysis: An overview". Chirality. 34 (2): 364–373. doi:10.1002/chir.23396. ISSN   0899-0042. PMID   34806232. S2CID   244523210.
  93. Xie, Sheng-Ming; Yuan, Li-Ming (2018-09-12). "Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography". Journal of Separation Science. 42 (1): 6–20. doi: 10.1002/jssc.201800656 . ISSN   1615-9306. PMID   30152091. S2CID   52098380.