Chloride process

Last updated

The chloride process is used to separate titanium from its ores. The goal of the process is to win high purity titanium dioxide from ores such as ilmenite (FeTiO3) and rutile (TiO2). The strategy exploits the volatility of TiCl4, which is readily purified and converted to the dioxide. Millions of tons of TiO2 are produced annually by this process, mainly for use as white pigments. As of 2017, the chloride process is used alongside the older sulfate process, which relies on hot sulfuric acid to extract iron and other impurities from ores. [1] :15

Contents

Process chemistry

In this process, the feedstock is treated at 1000 °C with carbon and chlorine gas, giving titanium tetrachloride. Typical is the conversion starting from the ore ilmenite: [2]

2 FeTiO3 + 7 Cl2 + 6 C → 2 TiCl4 + 2 FeCl3 + 6 CO

The process is a variant of a carbothermic reaction, which exploits the reducing power of carbon.

The titanium tetrachloride is purified by distillation. Other impurities are converted to the respective chlorides as well, but most are less volatile than TiCl4. Vanadium tetrachloride and vanadium oxytrichloride codistill with TiCl4, but these impurities can be removed by chemical reduction. [1] :13

It can be subsequently oxidized in an oxygen flame or plasma to give the pure titanium dioxide. [1] :13 [3] [4]

TiCl4 + O2 + heat → TiO2 + 2 Cl2

In this way, chlorine is recovered for recycling.

Process engineering

The Chloride Process Chloride Process By Ti-Cons.jpg
The Chloride Process

The standard chloride process for titanium dioxide base material consists of the following main production units: [5]

The following auxiliary production units are necessary:

Under steady state conditions the chloride process is a continuous cycle in which chlorine changes from the oxidized state to the reduced state and reverse. The oxidized form of the chlorine is molecular chlorine Cl2, the reduced form is titanium tetrachloride (TiCl4). The oxidizing agent is molecular oxygen (O2), the reducing agent is coke. Both must be fed into the process. The titanium is fed into the process in form of ore together with the coke. Titanium ore is a mixture of oxides. The added O2 leaves the process with the product TiO2, the added coke leaves the process together with the added oxygen from the titanium ore in form of CO and CO2. The other fed metals leave the process in form of metal chlorides. [6]

Related Research Articles

<span class="mw-page-title-main">Titanium</span> Chemical element with atomic number 22 (Ti)

Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.

<span class="mw-page-title-main">Aqua regia</span> Mixture of nitric acid and hydrochloric acid in a 1:3 molar ratio

Aqua regia is a mixture of nitric acid and hydrochloric acid, optimally in a molar ratio of 1:3. Aqua regia is a fuming liquid. Freshly prepared aqua regia is colorless, but it turns yellow, orange or red within seconds from the formation of nitrosyl chloride and nitrogen dioxide. It was so named by alchemists because it can dissolve noble metals like gold and platinum, though not all metals.

<span class="mw-page-title-main">Ilmenite</span> Titanium-iron oxide mineral

Ilmenite is a titanium-iron oxide mineral with the idealized formula FeTiO
3
. It is a weakly magnetic black or steel-gray solid. Ilmenite is the most important ore of titanium and the main source of titanium dioxide, which is used in paints, printing inks, fabrics, plastics, paper, sunscreen, food and cosmetics.

<span class="mw-page-title-main">Titanium dioxide</span> Chemical compound

Titanium dioxide, also known as titanium(IV) oxide or titania, is the inorganic compound derived from titanium with the chemical formula TiO
2
. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insoluble in water, although mineral forms can appear black. As a pigment, it has a wide range of applications, including paint, sunscreen, and food coloring. When used as a food coloring, it has E number E171. World production in 2014 exceeded 9 million tonnes. It has been estimated that titanium dioxide is used in two-thirds of all pigments, and pigments based on the oxide have been valued at a price of $13.2 billion.

<span class="mw-page-title-main">Silicon tetrachloride</span> Chemical compound

Silicon tetrachloride or tetrachlorosilane is the inorganic compound with the formula SiCl4. It is a colorless volatile liquid that fumes in air. It is used to produce high purity silicon and silica for commercial applications. It is a part of the chlorosilane family.

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as "tickle" or "tickle 4", as a phonetic representation of the symbols of its molecular formula.

The Kroll process is a pyrometallurgical industrial process used to produce metallic titanium from titanium tetrachloride. As of 2001 William Justin Kroll's process replaced the Hunter process for almost all commercial production.

<span class="mw-page-title-main">Hafnium tetrachloride</span> Chemical compound

Hafnium(IV) chloride is the inorganic compound with the formula HfCl4. This colourless solid is the precursor to most hafnium organometallic compounds. It has a variety of highly specialized applications, mainly in materials science and as a catalyst.

<span class="mw-page-title-main">Germanium tetrachloride</span> Chemical compound

Germanium tetrachloride is a colourless, fuming liquid with a peculiar, acidic odour. It is used as an intermediate in the production of purified germanium metal. In recent years, GeCl4 usage has increased substantially due to its use as a reagent for fiber optic production.

<span class="mw-page-title-main">Vanadium oxytrichloride</span> Chemical compound

Vanadium oxytrichloride is the inorganic compound with the formula VOCl3. This yellow distillable liquid hydrolyzes readily in air. It is an oxidizing agent. It is used as a reagent in organic synthesis. Samples often appear red or orange owing to an impurity of vanadium tetrachloride.

<span class="mw-page-title-main">Zirconium(IV) chloride</span> Chemical compound

Zirconium(IV) chloride, also known as zirconium tetrachloride, is an inorganic compound frequently used as a precursor to other compounds of zirconium. This white high-melting solid hydrolyzes rapidly in humid air.

<span class="mw-page-title-main">Roasting (metallurgy)</span> Process of heating a sulfide ore

Roasting is a process of heating a sulfide ore to a high temperature in the presence of air. It is a step in the processing of certain ores. More specifically, roasting is often a metallurgical process involving gas–solid reactions at elevated temperatures with the goal of purifying the metal component(s). Often before roasting, the ore has already been partially purified, e.g. by froth flotation. The concentrate is mixed with other materials to facilitate the process. The technology is useful in making certain ores usable but it can also be a serious source of air pollution.

The Becher process is a process to produce rutile, a form of titanium dioxide, from the ore ilmenite. Although it is competitive with the chloride process and the sulfate process, . the Becher process is not used on scale.

<span class="mw-page-title-main">Selenium tetrachloride</span> Chemical compound

Selenium tetrachloride is the inorganic compound composed with the formula SeCl4. This compound exists as yellow to white volatile solid. It is one of two commonly available selenium chlorides, the other example being selenium monochloride, Se2Cl2. SeCl4 is used in the synthesis of other selenium compounds.

Cristal Global is the world's second-largest producer of titanium dioxide and a leading producer of titanium chemicals. It was formed when The National Titanium Dioxide Company Ltd. combined with Millennium Chemicals. The headquarters are in Jeddah, Saudi Arabia. It is a significant shareholder in Bemax, the world’s 5th largest TiO2 feedstock producer.

<span class="mw-page-title-main">Chlorine perchlorate</span> Chemical compound

Chlorine perchlorate is a chemical compound with the formula Cl2O4. This chlorine oxide is an asymmetric oxide, with one chlorine atom in +1 oxidation state and the other +7, with proper formula ClOClO3. It is produced by the photodimerization of chlorine dioxide (ClO2) at room temperature by 436 nm ultraviolet light:

Tetrachloride may refer to:

The hydrogen assisted magnesiothermic reduction ("HAMR") process is a thermochemical process to obtain titanium metal from titanium oxides.

The +4 oxidation state dominates titanium chemistry, but compounds in the +3 oxidation state are also numerous. Commonly, titanium adopts an octahedral coordination geometry in its complexes, but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding.

References

  1. 1 2 3 Auer, Gerhard; Woditsch, Peter; Westerhaus, Axel; Kischkewitz, Jürgen; Griebler, Wolf-Dieter; Rohe, Markus; Liedekerke, Marcel (2017). "Pigments, Inorganic, 2. White Pigments". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.n20_n01.pub2. ISBN   978-3-527-30673-2.
  2. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  3. "The TiO2 Process". Ti-Cons. Retrieved 2016-12-17.
  4. Jones, Tony; Egerton, Terry A. (2000). "8.3 Titanium Dioxide. Chloride Process". Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. pp. 22–23. doi:10.1002/0471238961.0914151805070518.a01.pub3. ISBN   9780471238966.
  5. "Manufacture and General Properties of Titanium Dioxide Pigments" (PDF). Ti-Cons. Archived from the original (PDF) on 2011-01-24. Retrieved 2012-04-11.
  6. "The Details of the TiO2 Process" (PDF). Ti-Cons. Retrieved 2012-04-11.