Christite

Last updated
Christite
Christite.jpg
Christite crystals
General
Category Sulfosalt mineral
Formula
(repeating unit)
TlHgAsS3
IMA symbol Cri [1]
Strunz classification 2.HD.15
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P21/n
Unit cell a = 6.113 Å, b = 16.188 Å,
c = 6.111 Å; β = 96.71°;
V = 600.59 Å3; Z = 4
Identification
Formula mass 576.09 g/mol
ColorCrimson red, bright orange.
Crystal habit Subhedral grains, may be somewhat bladed or flattened
Cleavage {010} and {110} perfect, {101} good
Fracture Uneven
Mohs scale hardness1-2
Luster Adamantine
Streak light orange
Diaphaneity opaque to semitransparent
Specific gravity 6.2
Optical propertiesBiaxial
Pleochroism Weak to strong, grayish green, dark violet, bluish violet
References [2] [3] [4]

Christite is a mineral with the chemical formula Tl Hg As S 3. It is named after Dr. Charles L. Christ, a member of the U.S. Geological Survey. It usually comes in a crimson red or bright orange color. It has a density of 6.2 and has a rating between 1 and 2 on Mohs Hardness Scale. Christite has an adamantine luster and leaves behind an orange streak. [3] Its crystal system is monoclinic with possible crystal classes of twofold symmetry, mirror plane symmetry, and twofold with a mirror plane. This means it can have radial symmetry, mirror plane symmetry, or mirror plane symmetry perpendicular to the two-fold axis. [5] It is an anisotropic mineral, which means that it exhibits different properties when measured in different directions. In plane polarized light, its color is golden yellow. It is birefringent, which means that it has two distinct indices of refraction. This can be seen when one looks through the microscope with both polars crossed and sees the mineral change colors when it is rotated.

Occurrence

Christite occurs with baryte in hydrothermal veins in dolomite at the Carlin mine in Nevada and in pods within a mercury deposit, the Lanmuchang deposit, China. [4] It occurs associate with realgar, orpiment, lorandite, baryte and getchellite at the Carlin mine and with lorandite, baryte, pyrite and marcasite in the Lanmuchang. [4]

Related Research Articles

<span class="mw-page-title-main">Sodalite</span> Blue tectosilicate mineral

Sodalite is a tectosilicate mineral with the formula Na
8
(Al
6
Si
6
O
24
)Cl
2
, with royal blue varieties widely used as an ornamental gemstone. Although massive sodalite samples are opaque, crystals are usually transparent to translucent. Sodalite is a member of the sodalite group with hauyne, nosean, lazurite and tugtupite.

<span class="mw-page-title-main">Stilbite</span>

Stilbite is the name of a series of tectosilicate minerals of the zeolite group. Prior to 1997, stilbite was recognized as a mineral species, but a reclassification in 1997 by the International Mineralogical Association changed it to a series name, with the mineral species being named:

<span class="mw-page-title-main">Anhydrite</span> Mineral, anhydrous calcium sulfate

Anhydrite, or anhydrous calcium sulfate, is a mineral with the chemical formula CaSO4. It is in the orthorhombic crystal system, with three directions of perfect cleavage parallel to the three planes of symmetry. It is not isomorphous with the orthorhombic barium (baryte) and strontium (celestine) sulfates, as might be expected from the chemical formulas. Distinctly developed crystals are somewhat rare, the mineral usually presenting the form of cleavage masses. The Mohs hardness is 3.5, and the specific gravity is 2.9. The color is white, sometimes greyish, bluish, or purple. On the best developed of the three cleavages, the lustre is pearly; on other surfaces it is glassy. When exposed to water, anhydrite readily transforms to the more commonly occurring gypsum, (CaSO4·2H2O) by the absorption of water. This transformation is reversible, with gypsum or calcium sulfate hemihydrate forming anhydrite by heating to around 200 °C (400 °F) under normal atmospheric conditions. Anhydrite is commonly associated with calcite, halite, and sulfides such as galena, chalcopyrite, molybdenite, and pyrite in vein deposits.

<span class="mw-page-title-main">Alunite</span> Aluminium potassium sulfate mineral

Alunite is a hydroxylated aluminium potassium sulfate mineral, formula KAl3(SO4)2(OH)6. It was first observed in the 15th century at Tolfa, near Rome, where it was mined for the manufacture of alum. First called aluminilite by J.C. Delamétherie in 1797, this name was contracted by François Beudant three decades later to alunite.

<span class="mw-page-title-main">Austinite</span> Arsenate mineral

Austinite is a member of the adelite-descloizite group, adelite subgroup, the zinc (Zn) end member of the copper-Zn series with conichalcite. It is the zinc analogue of cobaltaustinite and nickelaustinite. At one time “brickerite” was thought to be a different species, but it is now considered to be identical to austinite. Austinite is named in honour of Austin Flint Rogers (1877–1957), American mineralogist from Stanford University, California, US.

<span class="mw-page-title-main">Lorándite</span>

Lorándite is a thallium arsenic sulfosalt with the chemical formula: TlAsS2. Though rare, it is the most common thallium-bearing mineral. Lorandite occurs in low-temperature hydrothermal associations and in gold and mercury ore deposits. Associated minerals include stibnite, realgar, orpiment, cinnabar, vrbaite, greigite, marcasite, pyrite, tetrahedrite, antimonian sphalerite, arsenic and barite.

<span class="mw-page-title-main">Ajoite</span>

Ajoite is a hydrated sodium potassium copper aluminium silicate hydroxide mineral. Ajoite has the chemical formula (Na,K)Cu7AlSi9O24(OH)6·3H2O, and minor Mn, Fe and Ca are usually also present in the structure. Ajoite is used as a minor ore of copper.

<span class="mw-page-title-main">Aguilarite</span>

Aguilarite is an uncommon sulfosalt mineral with formula Ag4SeS. It was described in 1891 and named for discoverer Ponciano Aguilar.

<span class="mw-page-title-main">Getchellite</span>

Getchellite is a rare sulfide of arsenic and antimony, AsSbS3, that was discovered by B. G. Weissberg of the New Zealand Department of Scientific and Industrial Research in 1963, and approved as a new species by the International Mineralogical Association in 1965. Many metal sulfides are grey to black, but a few are brightly colored. Orpiment is yellow to brownish gold, cinnabar is deep red and getchellite is a bright orange red.

Frankdicksonite is a halide mineral with the chemical formula BaF2 which corresponds to the chemical compound barium fluoride. It occurs in the Carlin gold deposit of Eureka County, Nevada as cubic crystals sized between 0.1 and 4 mm, and is of hydrothermal origin. Its only associated mineral is quartz and the frankdicksonite crystals are always completely encapsulated in it. Frankdicksonite has fluorite crystal structure with a cubic symmetry and the lattice constant a = 619.64 pm. Its Vickers hardness on the {111} cleavage crystal faces varies between 88 and 94 kg/mm2 and is close to that of the synthetic barium fluoride (95 kg/mm2). Its refractive index (1.475) is almost identical to that of BaF2 (1.474). Under electron irradiation, it emits strong blue cathodoluminescence. The major impurity in frankdicksonite is strontium with concentrations up to 0.5% by weight. Also present are silicon (0.02%) and magnesium (0.0015%); other impurities have concentrations below 0.0015%.

<span class="mw-page-title-main">Tsumebite</span>

Tsumebite is a rare phosphate mineral named in 1912 after the locality where it was first found, the Tsumeb mine in Namibia, well known to mineral collectors for the wide range of minerals found there. Tsumebite is a compound phosphate and sulfate of lead and copper, with hydroxyl, formula Pb2Cu(PO4)(SO4)(OH). There is a similar mineral called arsentsumebite, where the phosphate group PO4 is replaced by the arsenate group AsO4, giving the formula Pb2Cu(AsO4)(SO4)(OH). Both minerals are members of the brackebuschite group.

<span class="mw-page-title-main">Mendipite</span> Oxyhalide of lead. Rare mineral found in the Mendip Hills

Mendipite is a rare mineral that was named in 1939 for the locality where it is found, the Mendip Hills in Somerset, England. It is an oxyhalide of lead with formula Pb3Cl2O2.

<span class="mw-page-title-main">Hagendorfite</span>

Hagendorfite is an iron phosphate mineral with the chemical formula of (Na,Ca)MnFe2(PO4)3 and is named after where the mineral was discovered, Hagendorf-Süd, Bavaria, Germany.

Babefphite is a rare phosphate mineral with the general formula BaBe(PO4)(F,OH). The name is given for its composition (Ba meaning barium, Be meaning beryllium, F meaning fluorine, and P for phosphorus).

<span class="mw-page-title-main">Malayaite</span>

Malayaite is a calcium tin silicate mineral with formula CaSnOSiO4. It is a member of the titanite group.

<span class="mw-page-title-main">Dyscrasite</span> Silver antimonide mineral

The silver antimonide mineral dyscrasite has the chemical formula Ag3Sb. It is an opaque, silver white, metallic mineral which crystallizes in the orthorhombic crystal system. It forms pyramidal crystals up to 5 cm (2.0 in) and can also form cylindrical and prismatic crystals.

<span class="mw-page-title-main">Fluoborite</span>

Fluoborite has a chemical formula of Mg3(BO3)(F,OH)3. Its name comes from its main chemical components, FLUOrine and BORon. It was first described in 1926.

<span class="mw-page-title-main">Tsumcorite</span>

Tsumcorite is a rare hydrated lead arsenate mineral that was discovered in 1971, and reported by Geier, Kautz and Muller. It was named after the TSUMeb CORporation mine at Tsumeb, in Namibia, in recognition of the Corporation's support for mineralogical investigations of the orebody at its Mineral Research Laboratory.

<span class="mw-page-title-main">Nevadaite</span>

Nevadaite is a rare phosphate mineral with a chemical formula of

Waterhouseite, Mn7(PO4)2(OH)8, is a hydroxy manganese phosphate mineral. It is a medium-soft, brittle mineral occurring in pseudo-orthorhombic monoclinic bladed crystals and orange-brown to dark brown in color. Waterhouseite is on the softer side with a Mohs hardness of 4, has a specific gravity of 3.5 and a yellowish-brown streak. It is named after Frederick George Waterhouse, first director of the South Australian Museum, as well as recognizes the work Waterhouse Club has done in support of the South Australian Museum.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Mineralienatlas
  3. 1 2 Ralph, Jolyon; Chau, Ida (6 September 2010). "Christite". mindat.org - the mineral and locality database. Retrieved 15 September 2010.
  4. 1 2 3 Handbook of Mineralogy
  5. Fleischer, M., and Mandarino, J.A. (1991) Glossary of mineral species (Sixth edition). 38 p. Mineralogical Record, Tucson, Arizona.