Chromosomal polymorphism

Last updated

In genetics, chromosomal polymorphism is a condition where one species contains members with varying chromosome counts or shapes. Polymorphism is a general concept in biology where more than one version of a trait is present in a population.

In some cases of differing counts, the difference in chromosome counts is the result of a single chromosome undergoing fission, where it splits into two smaller chromosomes, or two undergoing fusion, where two chromosomes join to form one.

This condition has been detected in many species. Trichomycterus davisi, for example, is an extreme case where the polymorphism was present within a single chimeric individual. [1]

It has also been studied in alfalfa, [2] shrews, [3] Brazilian rodents, [4] and an enormous variety of other animals and plants. [5] In one instance it has been found in a human. [6]

Another process resulting in differing chromosomal counts is polyploidy. This results in cells which contain multiple copies of complete chromosome sets.

Possessing chromosomes of varying shapes is generally the result of a chromosomal translocation or chromosomal inversion.

In a translocation, genetic material is transferred from one chromosome to another, either symmetrically or asymmetrically (a Robertsonian translocation).

In an inversion, a segment of a chromosome is flipped end-for-end.

Implications for speciation

All forms of chromosomal polymorphism can be viewed as a step towards speciation. Polymorphisms will generally result in a level of reduced fertility, because some gametes from one parent cannot successfully combine with all gametes of the other parent. However, when both parents contain matching chromosomal patterns, this obstacle does not occur. Further mutations in one group will not flow as rapidly into the other group as they do within the group in which it originally occurred.

Further mutations can also cause absolute infertility. If an interbreeding population contains one group in which (for example) chromosomes A and B have fused, and another population in which chromosomes B and C have fused, both populations will be able to interbreed with the parent population. However, the two subpopulations will not be able to breed successfully with each other if the doubling of chromosome B is fatal. Similar difficulties will occur for incompatible translocations of material.

Related Research Articles

An allele, or allelomorph, is a variant of the sequence of nucleotides at a particular location, or locus, on a DNA molecule.

<span class="mw-page-title-main">Autosome</span> Any chromosome other than a sex chromosome

An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal pairs, which may have different structures. The DNA in autosomes is collectively known as atDNA or auDNA.

<span class="mw-page-title-main">Ploidy</span> Number of sets of chromosomes in a cell

Ploidy is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair, which chromosomes naturally exist as. Somatic cells, tissues, and individual organisms can be described according to the number of sets of chromosomes present : monoploid, diploid, triploid, tetraploid, pentaploid, hexaploid, heptaploid or septaploid, etc. The generic term polyploid is often used to describe cells with three or more sets of chromosomes.

In molecular biology, restriction fragment length polymorphism (RFLP) is a technique that exploits variations in homologous DNA sequences, known as polymorphisms, populations, or species or to pinpoint the locations of genes within a sequence. The term may refer to a polymorphism itself, as detected through the differing locations of restriction enzyme sites, or to a related laboratory technique by which such differences can be illustrated. In RFLP analysis, a DNA sample is digested into fragments by one or more restriction enzymes, and the resulting restriction fragments are then separated by gel electrophoresis according to their size.

<span class="mw-page-title-main">Karyotype</span> Photographic display of total chromosome complement in a cell

A karyotype is the general appearance of the complete set of chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is discerned by determining the chromosome complement of an individual, including the number of chromosomes and any abnormalities.

<span class="mw-page-title-main">Cytogenetics</span> Branch of genetics

Cytogenetics is essentially a branch of genetics, but is also a part of cell biology/cytology, that is concerned with how the chromosomes relate to cell behaviour, particularly to their behaviour during mitosis and meiosis. Techniques used include karyotyping, analysis of G-banded chromosomes, other cytogenetic banding techniques, as well as molecular cytogenetics such as fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH).

<span class="mw-page-title-main">Polymorphism (biology)</span> Occurrence of two or more clearly different morphs or forms in the population of a species

In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.

<span class="mw-page-title-main">Chromosomal translocation</span> Phenomenon that results in unusual rearrangement of chromosomes

In genetics, chromosome translocation is a phenomenon that results in unusual rearrangement of chromosomes. This includes balanced and unbalanced translocation, with two main types: reciprocal, and Robertsonian translocation. Reciprocal translocation is a chromosome abnormality caused by exchange of parts between non-homologous chromosomes. Two detached fragments of two different chromosomes are switched. Robertsonian translocation occurs when two non-homologous chromosomes get attached, meaning that given two healthy pairs of chromosomes, one of each pair "sticks" and blends together homogeneously.

<span class="mw-page-title-main">Haplotype</span> Group of genes from one parent

A haplotype is a group of alleles in an organism that are inherited together from a single parent.

Balancing selection refers to a number of selective processes by which multiple alleles are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. It can occur by various mechanisms, in particular, when the heterozygotes for the alleles under consideration have a higher fitness than the homozygote. In this way genetic polymorphism is conserved.

<span class="mw-page-title-main">Robertsonian translocation</span> Human chromosomal abnormality

Robertsonian translocation (ROB) is a chromosomal abnormality where the entire long arms of two different chromosomes become fused to each other. It is the most common form of chromosomal translocation in humans, affecting 1 out of every 1,000 babies born. It does not usually cause medical problems, though some people may produce gametes with an incorrect number of chromosomes, resulting in a risk of miscarriage. In rare cases this translocation results in Down syndrome and Patau syndrome. Robertsonian translocations result in a reduction in the number of chromosomes. A Robertsonian evolutionary fusion, which may have occurred in the common ancestor of humans and other great apes, is the reason humans have 46 chromosomes while all other primates have 48. Detailed DNA studies of chimpanzee, orangutan, gorilla and bonobo apes has determined that where human chromosome 2 is present in our DNA in all four great apes this is split into two separate chromosomes typically numbered 2a and 2b. Similarly, the fact that horses have 64 chromosomes and donkeys 62, and that they can still have common, albeit usually infertile, offspring, may be due to a Robertsonian evolutionary fusion at some point in the descent of today's donkeys from their common ancestor.

<span class="mw-page-title-main">Chromosomal inversion</span> Chromosome rearrangement in which a segment of a chromosome is reversed

An inversion is a chromosome rearrangement in which a segment of a chromosome becomes inverted within its original position. An inversion occurs when a chromosome undergoes a two breaks within the chromosomal arm, and the segment between the two breaks inserts itself in the opposite direction in the same chromosome arm. The breakpoints of inversions often happen in regions of repetitive nucleotides, and the regions may be reused in other inversions. Chromosomal segments in inversions can be as small as 100 kilobases or as large as 100 megabases. The number of genes captured by an inversion can range from a handful of genes to hundreds of genes. Inversions can happen either through ectopic recombination, chromosomal breakage and repair, or non-homologous end joining.

<span class="mw-page-title-main">Human genetics</span> Study of inheritance as it occurs in human beings

Human genetics is the study of inheritance as it occurs in human beings. Human genetics encompasses a variety of overlapping fields including: classical genetics, cytogenetics, molecular genetics, biochemical genetics, genomics, population genetics, developmental genetics, clinical genetics, and genetic counseling.

Genetic variability is either the presence of, or the generation of, genetic differences. It is defined as "the formation of individuals differing in genotype, or the presence of genotypically different individuals, in contrast to environmentally induced differences which, as a rule, cause only temporary, nonheritable changes of the phenotype". Genetic variability in a population is important for biodiversity.

The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.

A dicentric chromosome is an abnormal chromosome with two centromeres. It is formed through the fusion of two chromosome segments, each with a centromere, resulting in the loss of acentric fragments and the formation of dicentric fragments. The formation of dicentric chromosomes has been attributed to genetic processes, such as Robertsonian translocation and paracentric inversion. Dicentric chromosomes have important roles in the mitotic stability of chromosomes and the formation of pseudodicentric chromosomes. Their existence has been linked to certain natural phenomena such as irradiation and have been documented to underlie certain clinical syndromes, notably Kabuki syndrome. The formation of dicentric chromosomes and their implications on centromere function are studied in certain clinical cytogenetics laboratories.

<span class="mw-page-title-main">Hybrid speciation</span> Form of speciation involving hybridization between two different species

Hybrid speciation is a form of speciation where hybridization between two different species leads to a new species, reproductively isolated from the parent species. Previously, reproductive isolation between two species and their parents was thought to be particularly difficult to achieve, and thus hybrid species were thought to be very rare. With DNA analysis becoming more accessible in the 1990s, hybrid speciation has been shown to be a somewhat common phenomenon, particularly in plants. In botanical nomenclature, a hybrid species is also called a nothospecies. Hybrid species are by their nature polyphyletic.

In genetics, pseudolinkage is a characteristic of a heterozygote for a reciprocal translocation, in which genes located near the translocation breakpoint behave as if they are linked even though they originated on nonhomologous chromosomes.

The Infinite sites model (ISM) is a mathematical model of molecular evolution first proposed by Motoo Kimura in 1969. Like other mutation models, the ISM provides a basis for understanding how mutation develops new alleles in DNA sequences. Using allele frequencies, it allows for the calculation of heterozygosity, or genetic diversity, in a finite population and for the estimation of genetic distances between populations of interest.

This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. Overlapping and related terms can be found in Glossary of cellular and molecular biology, Glossary of ecology, and Glossary of biology.

References

  1. Borin, Luciana Andreia; Isabel Cristina Martins-Santos (September 2000). "Intra-individual numerical chromosomal polymorphism in Trichomycterus davisi (Siluriformes, Trichomycteridae) from the Iguaçu River basin in Brazil" (PDF). Genetics and Molecular Biology. 23 (3): 605–607. doi: 10.1590/S1415-47572000000300018 .
  2. Bauchan, Gary R.; T. Austin Campbell; M. Azhar Hossain (July 1, 2002). "Chromosomal Polymorphism as Detected by C-Banding Patterns in Chilean Alfalfa Germplasm". Crop Science. 42 (4): 1291–7. doi:10.2135/cropsci2002.1291. S2CID   85405717. Archived from the original on December 1, 2005. Retrieved November 10, 2005.
  3. Elrod DA, Beck ML, Kennedy ML (October 1996). "Chromosomal variation in the southern short-tailed shrew (Blarina carolinensis)". Genetica. 98 (2): 199–203. doi:10.1007/BF00121367. PMID   8999000. S2CID   20111391.
  4. Thales Renato O. de Freitas (1997). "Chromosome polymorphism in Ctenomys minutus (Rodentia-Octodontidae)". Brazilian Journal of Genetics. 20 (1). doi: 10.1590/S0100-84551997000100001 .
  5. "Google Scholar".
  6. Barry Starr (February 26, 2010). "The 44 Chromosome Man And What He Reveals About Our Genetic Past". The Tech Museum. Archived from the original on December 6, 2011.