Circulating endothelial cell

Last updated

Circulating endothelial cells (CECs) are endothelial cells that have been shed from the lining of the vascular wall into the blood stream. [1] Endothelial cells normally line blood vessels to maintain vascular integrity and permeability, but when these cells enter into the circulation, this could be a reflection of vascular dysfunction and damage. [2] There are many factors involved in the process of creating CECs, including: reduced interaction between the endothelial cells and basement membrane proteins, damaged endothelial cellular adhesion molecules, mechanical injury, decreased survival of cytoskeletal proteins, and inflammation. [1]

Contents

Endothelial progenitor cells (EPCs) are cells derived from the bone marrow which differentiate into endothelial cells to help support the vascular endothelium and create new blood vessels. [3] EPCs are biomarkers of repair while CEC are biomarkers of damage. [4] They can be distinguished by their different surface markers . [5]

History

Identification of CECs began in the 1970s. [6] A key step in their investigation occurred in 1992 when monoclonal antibodies to surface CEC antigens were discovered, [7] leading to novel markers of CECs. [8]

Role in cardiovascular disease

Prior to a myocardial infarction (MI or heart attack), plaque may accumulate in the coronary arteries, [9] Some plaque formations may rupture, causing a mechanical dislodgment of endothelial cells creating CEC. [10] The plaque that stays lodged in the coronary arteries may restrict blood flow to the cardiac muscle. [9] This causes ischemia; the progressive death of cardiac muscle due to lack of oxygen. [11] If the heart muscles have prolonged ischemia this may lead to the detachment of endocardial endothelial cells which can also create CEC. [12]

Frequency

Studies [13] have reported that in healthy individuals CECs are often at very low levels in the blood. Conversely, diseased individuals who suffer from cardiovascular problems, such as MIs, have elevated CEC levels found within the blood. [14] Using immunomagnetic separation or flow cytometry, CEC levels can be quantified. [5] Although levels vary between individuals, a study observed a mean of 40.6 cell/ml in individuals who suffered a heart attack . In comparison, 0.4 cells/ ml were found in healthy individuals [15]

Detection

The High-Definition Circulating Endothelial Cell (HD-CEC) assay is a novel fluid biopsy test which detects endothelial cells in the blood of patients who have recently suffered a heart attack. [15] Though not yet approved by the FDA, this test has demonstrated better specificity than the FDA approved CellSearch test used to detect circulating tumour cells. [15] CECs are known to express endothelial markers such as the blood glycoprotein von Willebrand factor (vWF) which is involved in platelet aggregation and adhesion, [8] CECs also express the cell surface protein CD146 [15] which is the most commonly known endothelial marker found in CECs and plays an important role in permeability, cell-cell cohesion and signalling. [16] CECs are identifiable through DAPI staining, a specialised method of DNA staining, and are absent of the hematopoietic marker CD45. [15] The HD-CEC assay identifies these markers based on reaction with specific antibodies as well as morphological characteristics of their cytoplasm and nuclei. [15]

Research

Further studies will use the HD-CEC test on patients who currently exhibit signs and symptoms of a heart attack but have not yet experienced one. [15] Researchers are hoping that the HD-CEC test will be used to predict cardiovascular diseases such as acute MI, angina and heart failure [13] and analyze vascular damage. [14]

Related Research Articles

Angina Chest discomfort due to not enough blood flow to heart muscle

Angina, also known as angina pectoris, is chest pain or pressure, usually due to insufficient blood flow to the heart muscle (myocardium).

Troponin Protein complex

Troponin, or the troponin complex, is a complex of three regulatory proteins that are integral to muscle contraction in skeletal muscle and cardiac muscle, but not smooth muscle. Measurements of cardiac-specific troponins I and T are extensively used as diagnostic and prognostic indicators in the management of myocardial infarction and acute coronary syndrome. Blood troponin levels may be used as a diagnostic marker for stroke, although the sensitivity of this measurement is low.

Coronary thrombosis Medical condition

Coronary thrombosis is defined as the formation of a blood clot inside a blood vessel of the heart. This blood clot may then restrict blood flow within the heart, leading to heart tissue damage, or a myocardial infarction, also known as a heart attack.

Thromboxane

Thromboxane is a member of the family of lipids known as eicosanoids. The two major thromboxanes are thromboxane A2 and thromboxane B2. The distinguishing feature of thromboxanes is a 6-membered ether-containing ring.

Cardiac markers are biomarkers measured to evaluate heart function. They can be useful in the early prediction or diagnosis of disease. Although they are often discussed in the context of myocardial infarction, other conditions can lead to an elevation in cardiac marker level.

Acute coronary syndrome Medical condition

Acute coronary syndrome (ACS) is a syndrome due to decreased blood flow in the coronary arteries such that part of the heart muscle is unable to function properly or dies. The most common symptom is centrally located chest pain, often radiating to the left shoulder or angle of the jaw, crushing, central and associated with nausea and sweating. Many people with acute coronary syndromes present with symptoms other than chest pain, particularly women, older patients, and patients with diabetes mellitus.

Variant angina Medical condition

Variant angina, and less commonly Prinzmetal angina,vasospastic angina, angina inversa, coronary vessel spasm, or coronary artery vasospasm, is a syndrome typically consisting of angina in contrast to stable angina which is generally triggered by exertion or intense exercise, commonly occurs in individuals at rest or even asleep and is caused by vasospasm, a narrowing of the coronary arteries due to contraction of the heart's smooth muscle tissue in the vessel walls. In comparison, stable angina is due to the permanent occlusion of these vessels by atherosclerosis.

Unstable angina (UA), also called crescendo angina, is a type of angina pectoris that is irregular. It is also classified as a type of acute coronary syndrome (ACS).

Asymmetric dimethylarginine Chemical compound

Asymmetric dimethylarginine (ADMA) is a naturally occurring chemical found in blood plasma. It is a metabolic by-product of continual protein modification processes in the cytoplasm of all human cells. It is closely related to L-arginine, a conditionally essential amino acid. ADMA interferes with L-arginine in the production of nitric oxide (NO), a key chemical involved in normal endothelial function and, by extension, cardiovascular health.

Coronary vasospasm refers to when a coronary artery suddenly undergoes either complete or sub-total temporary occlusion.

Soluble cell adhesion molecules (sCAMs) are a class of cell adhesion molecule that may represent important biomarkers for inflammatory processes involving activation or damage to cells such as platelets and the endothelium.

Désiré Collen Belgian chemist, physician

Désiré, Baron Collen is a Belgian physician, chemist, biotechnology entrepreneur and life science investor. He made several discoveries in thrombosis, haemostasis and vascular biology in many of which serendipity played a significant role. His main achievement has been his role in the development of tissue-type plasminogen activator (t-PA) from a laboratory concept to a life-saving drug for dissolving blood clots causing acute myocardial infarction or acute ischemic stroke. Recombinant t-PA was produced and marketed by Genentech Inc as Activase and by Boehringer Ingelheim GmbH as Actilyse, and is considered biotechnology's first life saving drug.

The Thrombolysis In Myocardial Infarction, or TIMI Study Group, is an Academic Research Organization (ARO) affiliated with Brigham and Women's Hospital and Harvard Medical School dedicated to advancing the knowledge and care of patients suffering from cardiovascular disease. The TIMI Study Group provides robust expertise in the key aspects of a clinical trial, including academic leadership, global trial management, biostatistics, clinical event adjudication, safety desk, medical hotline, and core laboratories. The group has its headquarters in Boston, Massachusetts.

Endothelial progenitor cell is a term that has been applied to multiple different cell types that play roles in the regeneration of the endothelial lining of blood vessels. Outgrowth endothelial cells are an EPC subtype committed to endothelial cell formation. Despite the history and controversy, the EPC in all its forms remains a promising target of regenerative medicine research.

Valentín Fuster Spanish cardiologist

Valentín Fuster Carulla, 1st Marquess of Fuster is a Spanish cardiologist.

In cardiology neocardiogenesis is the homeostatic regeneration, repair and renewal of sections of malfunctioning adult cardiovascular tissue. This includes a combination of cardiomyogenesis and angiogenesis.

Myocardial infarction Interruption of blood supply to a part of the heart

A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops to the coronary artery of the heart, causing damage to the heart muscle. The most common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck or jaw. Often it occurs in the center or left side of the chest and lasts for more than a few minutes. The discomfort may occasionally feel like heartburn. Other symptoms may include shortness of breath, nausea, feeling faint, a cold sweat or feeling tired. About 30% of people have atypical symptoms. Women more often present without chest pain and instead have neck pain, arm pain or feel tired. Among those over 75 years old, about 5% have had an MI with little or no history of symptoms. An MI may cause heart failure, an irregular heartbeat, cardiogenic shock or cardiac arrest.

A diagnosis of myocardial infarction is created by integrating the history of the presenting illness and physical examination with electrocardiogram findings and cardiac markers. A coronary angiogram allows visualization of narrowings or obstructions on the heart vessels, and therapeutic measures can follow immediately. At autopsy, a pathologist can diagnose a myocardial infarction based on anatomopathological findings.

Endothelial colony forming cells are adult endothelial progenitor cells capable of differentiating to regenerate endothelial cell populations. They are residents of adult vasculature and are also thought to migrate to areas of injury as one form of circulating endothelial cell. They are thought to play a critical role in vascular healing after injury as well as developmental angiogenesis.

Johann Bauersachs

Johann Bauersachs is a German internist, cardiologist, intensive care physician and professor at the Hannover Medical School. He is director of the Department of Cardiology and Angiology. He is known for his scientific work in the fields of acute coronary syndrome, left ventricular healing and remodeling after ischemia as well as acute and chronic heart failure.

References

  1. 1 2 Woywodt, A., Bahlmann, F.H., de Groot, K., Haller, H., Haubitz, M. (2002) Circulating endothelial cells: life, death, detachment and repair of the endothelial cell layer. Nephrol Dial Transplant. 17: 1728-1730
  2. Damani, S., Bacconi, A., Libiger, O., Chourasia, A. H., Serry, R., Gollapudi, R., ... & Topol, E. J. (2012). Characterization of circulating endothelial cells in acute myocardial infarction. Science translational medicine, 4(126), 126ra33-126ra33
  3. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., & Finkel, T. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine. 348: 593-600.
  4. Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., ... & Nickenig, G. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine. 353: 999-1007.
  5. 1 2 Boos, C. J., Lip, G. Y. and Blann, A. D. (2006) Circulating endothelial cells in cardiovascular disease. J. Am. Coll. Cardiol. 48: 1538–1547
  6. Bouvier, C.A., Gaynor, E., Clintron, J.R. et al (1970) Circulating endothelium as an indicator of vascular injury. Thromb Diath Haemorrh. 40: 163-168
  7. George, F., Brisson, C., Poncelet, P., Laurent, J.C., Massot, O., Arnoux, D., Ambrosi, P., Klein-Soyer, C., Cazenave, J.P., Sampol, J. (1992) Rapid isolation of human endothelial cells from whole blood using S-Endo 1 monoclonal antibody coupled to immunomagnetic beads: demonstration of endothelial injury after angioplasty. Thromb Haemost. 67:147–153
  8. 1 2 Martinez-Sales, V., S´anchez-L´azaro, I., Vila, V., Almenar, L., Contreras, T., Reganon, E. (2011) Circulating endothelial cells in patients with heart failure and left ventricular dysfunction. Disease Markers. 31: 75-82
  9. 1 2 Davies, M. J., & Thomas, A. C. (1985). Plaque fissuring--the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. British Heart Journal. 53: 363
  10. Mutin, M., Canavy, I., Blann, A., Bory, M., Sampol, J., & Dignat-George, F. (1999). Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood 93: 2951-2958
  11. Thygesen, K., Alpert, J. S., & White, H. D. (2007). Universal definition of myocardial infarction. Journal of the American College of Cardiology. 50: 2173-2195
  12. ] Ip, J. H., Fuster, V., Badimon, L., Badimon, J., Taubman, M. B., & Chesebro, J. H. (1990). Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. Journal of the American College of Cardiology. 15: 1667-1687
  13. 1 2 Damani, S., et al. (2012) Characterization of Circulating Endothelial Cells in Acute Myocardial Infarction. Science Translational Medicine.4: 1-9
  14. 1 2 Li, C., Wu, Q., Liu, B., Yao, Y., Chen, Y., Zhang, H.,& Ge, S. (2013). Detection and validation of circulating endothelial cells, a blood-based diagnostic marker of acute myocardial infarction. PLoS ONE, 8: e58478.
  15. 1 2 3 4 5 6 7 Bethel, K., Luttgen, M.S., Damani, S., Kolatkar, A., Lamy, R., Sabouri-Ghomi, M., Topol, S., Topol, E.J., Kuhn, P. (2014) Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction. Physical Biology. 11: 016002
  16. Goon, P.K.Y, Lip, G.Y.H., Boos, C.J., Stonelake, P.S., Blann, A.D. (2006) Circulating Endothelial Cells, Endothelial Progenitor Cells, and Endothelial Microparticles in Cancer. Neoplasia. 8: 79-88

Further reading