Citadel Bastion

Last updated

Citadel Bastion ( 72°0′S68°32′W / 72.000°S 68.533°W / -72.000; -68.533 ) is a rocky, flat-topped elevation at the south side of the terminus of Saturn Glacier, facing towards George VI Sound and the Rymill Coast, situated on the east side of Alexander Island, Antarctica. Its maximum elevation is about 645 m. Citadel Bastion lies next to Hodgson Lake. This mountain was mapped from trimetrogon air photography taken by the Ronne Antarctic Research Expedition, 1947–48, and from survey by the Falkland Islands Dependencies Survey, 1948–50. The name applied by the UK Antarctic Place-Names Committee because it resembles a fortified structure with a watchtower at the end of a wall. [1] [2]

Contents

Geology

Citadel Bastion is one of a series of nunataks that provide outcrops of Cretaceous (AptianAlbian) sedimentary rocks that comprise part of the 6.8 kilometer-thick Fossil Bluff Group, which underlies easternmost Alexander Island. These sedimentary rocks accumulated in shallow marine and terrestrial environments. The sedimentary rocks, which are exposed in Citadel Bastion and adjacent nunataks, consist of a 700 meter-thick sequence of laterally persistent beds of very fine to very coarse, rarely gravelly interbedded with occasional beds of sandstone (volcanic lithic arenite), mudstone, and conglomerate. At two horizons within these strata, beds of lithic and vitric tuff occur. well developed paleosols, leaf fossils, fossil wood, and fossil forests are widespread within this unit. The plant fossils consists mainly of coniferous plants (mainly podocarps). Fossils of Bennettitales, pteridophytes and liverworts, and to a lesser extent the angiosperms, are also common. [3] [4] Citadel Bastion is notable for bedrock outcrops that expose multiple fossil forests, which consist of upright standing trunks buried in place, and their associated paleosols. [5]

The analysis of paleocurrent data from and the sedimentology of sedimentary rocks, which comprise Citadel Bastion and adjacent nunataks, found that these rocks accumulated as a large alluvial fan about 15 km in radius. This alluvial fan built seaward along the edge of a Cretaceous volcanic arc into marine waters occupying a forearc basin. This alluvial fan was built by braided rivers flowing in a south to southwesterly direction. The thickness of sediments that fill ancient channels indicate that the major channels of these rivers may have been ten meters or more deep. The floodplains between channels were stable enough, despite periodic deposition of coarse and fine sediment during floods, to allow the formation of soils and development of forests. The source area for the fluvial detritus was a volcanic arc, which now forms the Antarctic Peninsula, to the east. Within this volcanic arc, volcanic activity provided pyroclastic ash fall deposits to the area. Fossil plants found in these sedimentary rocks indicate that the palaeoclimate was warm and humid throughout the period of deposition despite their polar position. [3] [4]

Quaternary Geology

Evidence shows that a thick ice sheet covered Citadel Bastion during the Last Glacial Maximum. Striated bedrock surfaces are found in the col on the south side of Citadel Bastion. The striations are best preserved at the edge of freshly exposed glacial tills. Striated bedrock has also been found on its slopes high as its summit. Numerous glacial erratics are also found in the col and on its slope all of the way up to and on its summit. These erratics are commonly striated and faceted. Some of them are bullet-shaped and aligned according to bedrock striations and ice flow within the former ice sheet. They are typically composed of sandstone. Other erratics are composed of conglomerate containing cobble-sized granitic clasts. [6] [7]

Cosmogenic beryllium-10 isotope dating of a few of the erratics indicate that they were exposed by the thinning of the ice sheet after the Last Glacial Maximum. The erratics within the col were exposed by thinning ice sheet about 13,500 years ago. Those at the summit of Citadel Bastion were exposed by thinning ice sheet about 10,200 years ago. These and other cosmogenic beryllium-10 isotope dates demonstrate a significant and progressive thinning and shrinkage of the ice sheet covering Alexandria Island from at least 22,000 years ago to about 10,000 years ago. [6] [7]

Related Research Articles

<span class="mw-page-title-main">Antarctic Peninsula</span> Peninsula located in northern Antarctica

The Antarctic Peninsula, known as O'Higgins Land in Chile and Tierra de San Martín in Argentina, and originally as Graham Land in the United Kingdom and the Palmer Peninsula in the United States, is the northernmost part of mainland Antarctica.

<span class="mw-page-title-main">Alexander Island</span> Island in the Bellingshausen Sea off Antarctica

Alexander Island, which is also known as Alexander I Island, Alexander I Land, Alexander Land, Alexander I Archipelago, and Zemlja Alexandra I, is the largest island of Antarctica. It lies in the Bellingshausen Sea west of Palmer Land, Antarctic Peninsula from which it is separated by Marguerite Bay and George VI Sound. The George VI Ice Shelf entirely fills George VI Sound and connects Alexander Island to Palmer Land. The island partly surrounds Wilkins Sound, which lies to its west. Alexander Island is about 390 kilometres (240 mi) long in a north–south direction, 80 kilometres (50 mi) wide in the north, and 240 kilometres (150 mi) wide in the south. Alexander Island is the second-largest uninhabited island in the world, after Devon Island.

<span class="mw-page-title-main">Polystrate fossil</span> Creationist term for a fossil that extends through more than one geological stratum

A polystrate fossil is a fossil of a single organism that extends through more than one geological stratum. The word polystrate is not a standard geological term. This term is typically found in creationist publications.

<span class="mw-page-title-main">Shackleton Range</span> Mountain range in Antarctica

The Shackleton Range is a mountain range in Antarctica that rises to 1,875 metres (6,152 ft) and extends in an east–west direction for about 100 miles (160 km) between the Slessor and Recovery Glaciers.

<span class="mw-page-title-main">Crary Mountains</span> Volcanoes in Antarctica

Crary Mountains are a group of ice-covered volcanoes in Marie Byrd Land, Antarctica. They consist of two or three shield volcanoes, named Mount Rees, Mount Steere and Mount Frakes, which developed during the course of the Miocene and Pliocene and last erupted about 30,000-40,000 years ago. The first two volcanoes are both heavily incised by cirques, while Mount Frakes is better preserved and has a 4 kilometres (2.5 mi) wide caldera at its summit. Boyd Ridge is another part of the mountain range and lies southeast of Mount Frakes; it might be the emergent part of a platform that underlies the mountain range.

<span class="mw-page-title-main">Framnes Mountains</span> Mountain range in Antarctica

The Framnes Mountains is a group of Antarctic mountain ranges in Mac. Robertson Land, to the south of the Mawson Coast. The range is surrounded by, and largely covered by, an ice sheet.

Hodgson Lake is a perennially ice-covered freshwater lake, which is about 2 km (1.2 mi) long by about 1.5 km (0.93 mi) wide. It is located within the southern part of Alexander Island, west of Palmer Land in Antarctica, at approximately 72°S latitude and 68°W longitude. This lake has a 93.4 m (306 ft) deep water column that lies sealed beneath a 3.6 to 4.0 m thick perennial lake ice. The lake is an ultra-oligotrophic lake with very low nutrient content and very low productivity. There is no detectable life living in Hodgson Lake. The lake extends eastward into George VI Sound and the George VI Ice Shelf making it adjacent to the sound. The northern side of this lake is bounded by the Saturn Glacier, which flows east into George VI Sound. The lake lies next to and southeast of Citadel Bastion, a pre-eminent mountain on Alexander Island.

<span class="mw-page-title-main">Geology of Antarctica</span> Geologic composition of Antarctica

The geology of Antarctica covers the geological development of the continent through the Archean, Proterozoic and Phanerozoic eons.

The Quartz Hills is an arcuate cluster of largely ice-free hills and peaks found immediately south of Colorado Glacier along the west side of Reedy Glacier. They are part of the Transantarctic Mountains of Antarctica.

The Seal Nunataks are a group of 16 islands called nunataks emerging from the Larsen Ice Shelf east of Graham Land, Antarctic Peninsula. The Seal Nunataks have been described as separate volcanic vents of ages ranging from Miocene to Pleistocene. There are unconfirmed reports of Holocene volcanic activity.

Coal Nunatak is a flat-topped rock mass with steep cliffs facing south, standing 2 nautical miles (4 km) southwest of Corner Cliffs on the southeast corner of Alexander Island, Antarctica. Lincoln Ellsworth first noted it from the air on November 23, 1935, and mapped it from photos obtained on that flight by W.L.G. Joerg. Observed from the northwest, only the summit protrudes above the coastal ice, and it was uncertain whether this was a peak on Alexander Island or an island in George VI Sound. Its true nature was determined by the Falkland Islands Dependencies Survey (FIDS) who visited and surveyed this nunatak in 1949. So named by FIDS for exposures of thin lenses of coal occur there.

Triton Point is a rocky headland at the east end of the high ridge separating Venus Glacier and Neptune Glacier on the east coast of Alexander Island, Antarctica. Lincoln Ellsworth first observed the coast in this vicinity from the air by on 23 November 1935, and it was roughly mapped from photos obtained on that flight by W.L.G. Joerg. The British Graham Land Expedition roughly surveyed Triton Point in 1936 by the Falkland Islands Dependencies Survey more accurately defined it in 1949. The United Kingdom Antarctic Place-Names Committee named it for its association with nearby Neptune Glacier, Triton being one of the satellites of the planet Neptune, the eighth planet of the Solar System.

The Geode Nunataks are a group of small nunataks on the west side of Sibelius Glacier, immediately north of the northern extremity of the Finlandia Foothills, in northeast Alexander Island, Antarctica. They were so named by the UK Antarctic Place-Names Committee in 1977; the nunataks are composed of lava flows with abundant geodes.

Metavolcanic Mountain is a large flat-topped mountain, 2,480 metres (8,140 ft) high, located 5 nautical miles north of the Hatcher Bluffs on the east side of Reedy Glacier, Antarctica.

<span class="mw-page-title-main">Geology of New England</span> Overview of the geology of New England

New England is a region in the North Eastern United States consisting of the states Rhode Island, Connecticut, Massachusetts, New Hampshire, Vermont, and Maine. Most of New England consists geologically of volcanic island arcs that accreted onto the eastern edge of the Laurentian Craton in prehistoric times. Much of the bedrock found in New England is heavily metamorphosed due to the numerous mountain building events that occurred in the region. These events culminated in the formation of Pangaea; the coastline as it exists today was created by rifting during the Jurassic and Cretaceous periods. The most recent rock layers are glacial conglomerates.

Stephenson Nunatak is a prominent, pyramid-shaped rock nunatak, rising to about 640 m, which rises 300 m above the surrounding ice at the northwest side of Kirwan Inlet in the southeast part of Alexander Island, Antarctica. Discovered and roughly surveyed in 1940-41 by Finn Ronne and Carl R. Eklund of the United States Antarctic Service. Resurveyed in 1949 by the Falkland Islands Dependencies Survey and named by the United Kingdom Antarctic Place-Names Committee for Alfred Stephenson, surveyor with the British Graham Land Expedition, who led a sledge party south into George VI Sound to about 72S in 1936. There happens to be another landform on Alexander Island which is named after Alfred Stephenson, that being Mount Stephenson, the highest point of Alexander Island rising to 2,987 m.

<span class="mw-page-title-main">Geology of the Isle of Skye</span>

The geology of the Isle of Skye in Scotland is highly varied and the island's landscape reflects changes in the underlying nature of the rocks. A wide range of rock types are exposed on the island, sedimentary, metamorphic and igneous, ranging in age from the Archaean through to the Quaternary.

<span class="mw-page-title-main">Geology of the Isle of Mull</span>

The geology of the Isle of Mull in Scotland is dominated by the development during the early Palaeogene period of a ‘volcanic central complex’ associated with the opening of the Atlantic Ocean. The bedrock of the larger part of the island is formed by basalt lava flows ascribed to the Mull Lava Group erupted onto a succession of Mesozoic sedimentary rocks during the Palaeocene epoch. Precambrian and Palaeozoic rocks occur at the island's margins. A number of distinct deposits and features such as raised beaches were formed during the Quaternary period.

<span class="mw-page-title-main">Mount Petras</span> Mountain in Marie Byrd Land, Antarctica

Mount Petras is a mountain in Antarctica. It consists of volcanic rocks, most of Cretaceous age but there is also an Eocene-Oligocene volcanic system that may have been emplaced inside of thin ice. It is part of the Marie Byrd Land Volcanic Province and is its oldest volcano.

<span class="mw-page-title-main">Hudson Mountains</span> Mountain range in Antarctica

The Hudson Mountains are a mountain range in western Ellsworth Land just east of Pine Island Bay at the Walgreen Coast of the Amundsen Sea. They are of volcanic origin, consisting of low scattered mountains and nunataks that protrude through the West Antarctic Ice Sheet. The Hudson Mountains are bounded on the north by Cosgrove Ice Shelf and on the south by Pine Island Glacier. The mountains were volcanically active during the Miocene and Pliocene, but there is evidence for an eruption about two millennia ago and uncertain indications of activity in the 20th century.

References

  1. United States Geological Survey (nd) Citadel Bastion. Geographic Names Information System, U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia.
  2. Stewart, J. (2011) Antarctic An Encyclopedia McFarland & Company Inc, New York. 1776 pp. ISBN   9780786435906.
  3. 1 2 Cantrill, D J. (1996) Fern thickets from the Cretaceous of Alexander Island, Antarctica containing Alamatus bifarius Douglas and Aculea acicularis sp. nov. Cretaceous Research. 17(2):169–82.
  4. 1 2 Nichols, G.J., and D.J. Cantrill, (2002) Tectonic and climatic controls on a Mesozoic forearc basin succession, Alexander Island, Antarctica. Geological Magazine 139(3):313–330.
  5. Howe, J., and J.E. Francis (2005) Metamorphosed palaeosols associated with Cretaceous fossil forests, Alexander Island, Antarctica. Journal of the Geological Society. 162(6):951–957.
  6. 1 2 Hodgson D.A., S.J. Roberts, M.J. Bentley, J.A. Smith, J.S. Johnson, E. Verleyen, W. Vyverman, A.J. Hodson, M.J. Leng, A. Cziferszky, A.J. Fox, and D.C.W. Sanderson (2009) Exploring former subglacial Hodgson Lake, Antarctica Paper I. Quaternary Science Reviews. 28(23-24):2295–2309.
  7. 1 2 Johnson, J.S., J.D. Everest, P.T. Leat, N.R. Golledge, D.H. Rood, and F.M. Stuart, 2012, The deglacial history of NW Alexander Island, Antarctica, from surface exposure dating. Quaternary Research. 77(2):273–280.

See also