This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Developer | EMC Corporation (1999 - 2011) Data General (1994 - 1999) |
---|---|
Type | Storage server |
Release date | 1994 |
Discontinued | 2011 |
Predecessor | Data General HADA |
Successor | EMC VNX |
Related | EMC Celerra |
Clariion (styled CLARiiON) is a discontinued [1] SAN disk array manufactured and sold by EMC Corporation, it occupied the entry-level and mid-range of EMC's SAN disk array products. In 2011, EMC introduced the EMC VNX Series, designed to replace both the Clariion and Celerra products. [2]
Upon launch in 2008, [3] the latest generation CX4 series storage arrays supported fibre channel and iSCSI front end bus connectivity. The fibre channel back end bus offered 4 Gbit/s of bandwidth with FC-SCSI disks or SATAII disks. [4]
The EMC Celerra NAS device is based on the same X-blade architecture as the CLARiiON storage processor.
The first CLARiiON was developed in 1992 by Data General Corporation, [5] one of the first minicomputer companies. CLARiiON was an early commercial example of a RAID product and initially sold exclusively as an array with the company's Aviion line of computer systems as the HADA (High Availability Disk Array) and later the HADA II [6] before being made available for broader open systems attachment and renamed CLARiiON in 1994. [7] Realizing the enormous potential of storage arrays, Data General created a separate Clariion division and began selling the product as an OEM offering to its systems competitors. While this somewhat lessened the advantages of Aviion in the marketplace, and was a source of internal corporate friction, it allowed the company to sell higher volumes and popularize the brand. The strategy paid dividends as the company was acquired by EMC in 1999, primarily for the CLARiiON line of products.
In 2011, EMC introduced the new VNX series of unified storage disk arrays intended to replace both CLARiiON and Celerra products. Internally the VNX is labeled the CX5. [8] In early 2012, both CLARiiON and Celerra were discontinued.
The Clariion disk array project started in the early 1990s when Tom West (the protagonist of the Pulitzer Prize winning book The Soul of a New Machine ) convinced Data General to develop the array. West realized the potential for more advanced and openly compatible data-storage devices, as did competitors such as Digital Equipment Corporation with their StorageWorks product. [9]
Patented in 1994, the Clariion disk array had some interesting features that later became standard in the data-storage and computing industry. Features mentioned in the patent paperwork included optional hot swapping, [10] guide rails for proper electrical contact, and a method to lock the drives in place once they were secured in the disk enclosure. Other notable features include industry's first dual active-controller design, mirrored write cache, full system redundancy and hot repair.[ citation needed ]
The Clariion line was soon extended to contain SCSI disk arrays ranging from 7 to 30 slots. In 1997, Data General's Clariion division took the unusual step of adopting an emerging standard — Fibre Channel. The FC5000 array utilized a Fibre Channel Arbitrated Loop connection that doubled the performance of SCSI arrays at that time. It was also the first to use RAID level 5 on Fibre Channel drives.[ citation needed ]
From there, the Clariion range grew into a faster, more expandable midrange storage platform, culminating in the FC5700 under Data General. After EMC's acquisition of Data General, significant development of a new range of Clariion arrays took place, resulting in the FC4500 and FC4700. A special model was the IP4700, offering IP-based access to storage.
Within a couple of years,[ when? ] the first CX series of Clariions (CX200, CX400 and CX600) was developed. Subsequent processor and bandwidth upgrades led to a new CX lineup (CX300, CX500, CX700) and a low end SATA based Clariion array, the AX100 (now updated to AX150). In 2003, Clariion became the industry's first NEBS-certified storage system.
In May 2006, EMC introduced the third generation of Clariion, named CX3 UltraScale. The lineup, consisting of the CX3-20, CX3-40 and CX3-80, was the industry's only storage platform to leverage end-to-end 4 Gbit/s (4 billion bits per second) Fibre Channel and PCI-Express technologies. Later in 2007, the line was expanded to include a new entry-level storage system, the CX3-10.
Most newer Clariion models up to the CX-4 run a version of Windows XP Embedded.[ citation needed ]
The Clariion is built on an Intel platform and has quite unique software layer: it runs two operating environments in parallel. Windows XP Embedded or stripped-down version of Windows Server for management and maintenance tasks and proprietary UNIX-based FLARE as an actual "data mover". [11] Embedded Windows (in the fourth generation this is 64-bit Windows Storage Server, the third generation used 32-bit Windows XP). The form factor is a half-width 1U or 2U device known as an X-blade, two of which are mounted side by side in the storage processor enclosure. This provides a fully redundant active-active configuration, with both storage processors serving requests and each acting as failover for the other so that initiators see the array as active-passive. An integrated UPS provides security for data in the event of power failure.
Storage is fibre-attached, initiators may be fibre- or IP-attached, the architecture supports both on the same array depending on configuration. Storage is connected via back-end loops with up to 120 drives per loop, the drives are contained in Disk Array Enclosures (DAEs) of 15 drives each.
The operating environment, FLARE (Fibre Logic Array Runtime Environment), resides on the first four disks of the first DAE (bus 0 enclosure 0), which is also supplied by the integrated UPS. In the event of power failure, this space is also used to store the contents of the write cache so that all writes are completed on restoration of power.
Management of the Clariion is usually through inbuilt Java-based management software called Navisphere.
With the fourth generation UltraFlex series, I/O is provided through pluggable modules providing either IP or fibre connectivity, allowing additional back-end and front-end connections to be added over the life of the array.
Advanced functionality of the Clariion is licensed and enabled through software. This includes SAN replication, Quality of service (QOS) and snapshots.
The CLARiiON was a dual controller active/passive array, meaning that it had a mirrored write cache, but only one controller was actively serving requests for any single LUN presented to initiators. This could cause issues with unsuspecting clients, one path would always appear dead. Accesses to it would trigger a reassignment of the LUN to the other controller, a so-called trespass. This had severe implications on IO performance, and on older models like the 4500 models, this could cause a controller to crash if the system was directly (loop) attached to multiple IO-heavy hosts. The second controller would then take over the load from the first one, crash due to the additional LUN trespasses. By this time, the first controller comes up and is missing a partner to sync to. At this point, some LUNs could end up with no controller responsible for them, so-called unassigned LUNs.
Crashes were uncommon when the use of FC fabrics become common place, but the general issue of trespassing lived on until a certain firmware (FLARE) level with ALUA support was released, ca. 2008.
The AX series is considered the entry-level disk array.
Currently,[ when? ] two models are available the AX4 and the AX150. The AX150 supports up to 12 Serial ATA disks with either 250, 500 or 750 GB (1 GB = 109 B) at a throughput of 150 (250 GB disks) or 300 MB/s (500, 750 GB disks) and, optionally, NCQ. Supported RAID levels are RAID 5 (with min. 3 disks) and RAID 1/0 (min. 4 disks). The Fibre Channel connection supports transfer speeds of up to 2 Gbit/s (with both AL and SW configurations), iSCSI is physically limited to max. 1 Gbit/s. The AX150 is available in four configurations which differ in connection and number of controllers.
The AX4 is the successor of the AX150 and can support up to 60 Serial ATA or Serial Attached SCSI disks (with "Expansion Pack"). The base version has only place for 12 disks. Similar to the AX150 it is available in iSCSI or Fibre Channel configurations. Opposed to the AX150 the AX4 supports Fibre Channel transfer speeds of up to 4 Gbit/s.
Model | Connection | # of controllers | speed | # of supported disks |
---|---|---|---|---|
AX150 | FC | 2 | 2 Gbit/s | 12 |
AX150SC | FC | 1 | 2 Gbit/s | 12 |
AX150i | iSCSI | 2 | 1 Gbit/s | 12 |
AX150iSC | iSCSI | 1 | 1 Gbit/s | 12 |
AX4-5F | FC | 1 or 2 | 4 Gbit/s | 12 (60 with "Expansion Pack") |
AX4-5I | iSCSI | 1 or 2 | 1 Gbit/s | 12 (60 with "Expansion Pack") |
The CX series supports both SATA and Fibre Channel disks. Supported RAID levels are 1/0, 0, 1, 3, 5, and 6; the disks can be configured into groups with different RAID levels.
Models of the CX series come in two configurations: Fibre Channel (transfer speeds max. 2 Gbit/s) and iSCSI (max. 1 Gbit/s). The exception is the CX700, which is FC only. The names of the iSCSI models end with an i, e.g.CX500i.
Model | Max. FC hosts | Max. disk drives | Initial capacity | Max. capacity (1 TB = 1012 B) |
---|---|---|---|---|
CX300 | 64 | 60 | 365 GB | 27 TB |
CX500 | 128 | 120 | 4 TB | 59 TB |
CX700 | 256 | 240 | 4 TB(?) | 119 TB |
The CX3 series originally consisted of CX3-20, CX3-40, and CX3-80 models. Later the series was refreshed to include the CX3-10 and the "i" and "f" identifiers.
Model | Max. FC hosts | Max. disk drives | Initial capacity | Max. capacity (1 TB = 1012 B) |
---|---|---|---|---|
CX3-10 | 64 | 60 | 1 TB | 60 TB |
CX3-20 | 128 | 120 | 1 TB | 120 TB |
CX3-40 | 128 | 240 | 1 TB | 240 TB |
CX3-80 | 256 | 480 | 1 TB | 480 TB |
The CX4 UltraFlex series contains multiple models which differ in the maximum number of disks (SATA or Fibre Channel) and the number of iSCSI and FC connections. The PCI Express connection between the FC interface and the storage processor allows transfer speeds of up to 4 Gbit/s, while iSCSI supports speeds of max. 1 Gbit/s. All current[ when? ] models support RAID 0, 1, 1/0, 3, 5, and 6; as with the CX series, groups with differing RAID levels can be created.
Each CX4 array consists of dual redundant hot-swappable components including storage processors, mirrored cache and battery backup, as well as redundant power supplies. The CX4 series supports Fibre Channel and iSCSI host connectivity.
Major New Features in the CX4 UltraFlex Series include support for solid state flash drives, 64-bit FLARE Operating Environment and PCI-Express based SLIC I/O cards. The CX4-480 and CX-960 support fibre channel solid state flash drives introduced by EMC for the Symmetrix DMX-4 in January 2008. Solid State Flash drives offer a significant performance advantage over mechanical drives and provide a new storage tier which EMC calls Tier-0. The new version of the FLARE operating environment that ships with the CX4 series includes support for the 64-bit Intel Xeon CPUs in the Storage Processors. The CX4 Series is also the first product to use the new PCI Express based SLIC I/O cards. The product-agnostic SLIC I/O cards provide more flexibility for future upgrades as new technologies become available, such as 8 GBit Fibre Channel and 10 GBit Ethernet/iSCSI.
Model | Memory | Front-end FC ports | Front-end iSCSI ports | Back-end ports | Max. HA Hosts | Max. disk drives | Max. capacity | Flash Drives |
---|---|---|---|---|---|---|---|---|
CX4-120 | 6 GB | 4 | 4 | 2 | 128 | 120 | 120 TB | Yes |
CX4-240 | 8 GB | 4 | 4 | 4 | 256 | 240 | 231 TB | Yes |
CX4-480 | 16 GB | 8 | 4 | 4 | 256 | 480 | 939 TB | Yes |
CX4-960 | 32 GB | 8 | 4 | 8 | 512 | 960 | 1899 TB | Yes |
Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices, best known for its use with storage devices such as hard disk drives. SCSI was introduced in the 1980s and has seen widespread use on servers and high-end workstations, with new SCSI standards being published as recently as SAS-4 in 2017.
Internet Small Computer Systems Interface or iSCSI is an Internet Protocol-based storage networking standard for linking data storage facilities. iSCSI provides block-level access to storage devices by carrying SCSI commands over a TCP/IP network. iSCSI facilitates data transfers over intranets and to manage storage over long distances. It can be used to transmit data over local area networks (LANs), wide area networks (WANs), or the Internet and can enable location-independent data storage and retrieval.
In computer hardware, a host controller, host adapter, or host bus adapter (HBA), connects a computer system bus, which acts as the host system, to other network and storage devices. The terms are primarily used to refer to devices for connecting SCSI, SAS, NVMe, Fibre Channel and SATA devices. Devices for connecting to FireWire, USB and other devices may also be called host controllers or host adapters.
Serial Storage Architecture (SSA) was a serial transport protocol used to attach disk drives to server computers. It was developed by IBM employee Ian Judd in 1990 to provide data redundancy for critical applications. SSA was deployed in server RAID environments, where it was capable of providing for up to 80 MB/s of data throughput, with sustained data rates as high as 60 MB/s in non-RAID mode and 35 MB/s in RAID mode.
The Symmetrix system was an EMC's enterprise storage array. It combined dozens of hard drives into a single virtual device that was then directly attached to a computer or I/O channel, or shared on a storage area network or a local area network. It was the flagship product of EMC in the 1990s and 2000s.
The HP Storageworks XP is a computer data storage disk array sold by Hewlett Packard Enterprise using Hitachi Data Systems hardware and adding their own software to it. It's based on the Hitachi Virtual Storage Platform and targeted towards enabling large scale consolidation, large database, Oracle, SAP, Exchange, and online transaction processing (OLTP) environments.
In computer storage, a logical unit number, or LUN, is a number used to identify a logical unit, which is a device addressed by the SCSI protocol or by Storage Area Network protocols that encapsulate SCSI, such as Fibre Channel or iSCSI.
A NetApp FAS is a computer storage product by NetApp running the ONTAP operating system; the terms ONTAP, AFF, ASA, FAS are often used as synonyms. "Filer" is also used as a synonym although this is not an official name. There are three types of FAS systems: Hybrid, All-Flash, and All SAN Array:
The IBM SAN Volume Controller (SVC) is a block storage virtualization appliance that belongs to the IBM System Storage product family. SVC implements an indirection, or "virtualization", layer in a Fibre Channel storage area network (SAN).
The IBM Storage product portfolio includes disk, flash, tape, NAS storage products, storage software and services. IBM's approach is to focus on data management.
ATTO Technology, Inc. is a manufacturer of storage connectivity products for data-intensive computing. ATTO manufactures Fibre Channel and SAS/SATA host bus adapters, RAID adapters, Fibre Channel switches, protocol conversion bridges, storage controllers, MacOS iSCSI initiator software and acceleration software with storage interface connectivity to SATA, SAS, Fibre Channel, Thunderbolt devices, Ethernet and NVMe.
The Multi Protocol File System (MPFS) is a multi-path network filesystem technology developed and sold by EMC Corporation. MPFS is intended to allow hundreds to thousands of client computer nodes to access shared computer data with higher performance than conventional NAS file-sharing protocols such as NFS.
A storage area network (SAN) or storage network is a computer network which provides access to consolidated, block-level data storage. SANs are primarily used to access data storage devices, such as disk arrays and tape libraries from servers so that the devices appear to the operating system as direct-attached storage. A SAN typically is a dedicated network of storage devices not accessible through the local area network (LAN).
EqualLogic, Inc. was an American computer data storage company based in Nashua, New Hampshire, active from 2001 to 2007. In 2008, the company was merged into Dell Inc. Dell-branded EqualLogic products are iSCSI-based storage area network (SAN) systems. Dell has 3 different lines of SAN products: EqualLogic, Compellent and Dell PowerVault.
Universal Storage Platform (USP) was the brand name for an Hitachi Data Systems line of computer data storage disk arrays circa 2004 to 2010.
IBM Storwize systems were virtualizing RAID computer data storage systems with raw storage capacities up to 32 PB. Storwize is based on the same software as IBM SAN Volume Controller (SVC).
RecoverPoint is a continuous data protection product offered by Dell EMC which supports asynchronous and synchronous data replication of block-based storage. RecoverPoint was originally created by a company called Kashya, which was bought by EMC in 2006.
In computing, Linux-IO (LIO) Target is an open-source implementation of the SCSI target that has become the standard one included in the Linux kernel. Internally, LIO does not initiate sessions, but instead provides one or more Logical Unit Numbers (LUNs), waits for SCSI commands from a SCSI initiator, and performs required input/output data transfers. LIO supports common storage fabrics, including FCoE, Fibre Channel, IEEE 1394, iSCSI, iSCSI Extensions for RDMA (iSER), SCSI RDMA Protocol (SRP) and USB. It is included in most Linux distributions; native support for LIO in QEMU/KVM, libvirt, and OpenStack makes LIO also a storage option for cloud deployments.
Dell EMC Unity is one of Dell EMC's mid-range storage array product lines. It was designed from the ground up as the next-generation midrange unified storage array after the EMC VNX and VNXe series, which evolved out of the EMC Clariion SAN disk array.
Dell EMC VMAX is Dell EMC’s flagship enterprise storage array product line. It evolved out of the EMC Symmetrix array, EMC’s primary storage product of 1990s and early 2000s.