Switched fabric

Last updated
Fibre Channel
Layer 4. Protocol mapping
LUN masking
Layer 3. Common services
Layer 2. Network
Fibre Channel fabric
Fibre Channel zoning
Registered state change notification
Layer 1. Data link
Fibre Channel 8b/10b encoding
Layer 0. Physical

Switched fabric or switching fabric is a network topology in which network nodes interconnect via one or more network switches [1] (particularly crossbar switches). Because a switched fabric network spreads network traffic across multiple physical links, it yields higher total throughput than broadcast networks, such as the early 10BASE5 version of Ethernet and most wireless networks such as Wi-Fi.

Contents

The generation of high-speed serial data interconnects that appeared in 2001–2004 which provided point-to-point connectivity between processor and peripheral devices are sometimes referred to as fabrics; however, they lack features such as a message-passing protocol.[ citation needed ] For example, HyperTransport, the computer processor interconnect technology, continues to maintain a processor bus focus even after adopting a higher speed physical layer. Similarly, PCI Express is just a serial version of PCI; it adheres to PCI's host/peripheral load/store direct memory access (DMA)-based architecture on top of a serial physical and link layer.

Fibre Channel

Example topology of a Fibre Channel switched fabric network Switched-fabric.svg
Example topology of a Fibre Channel switched fabric network
A storage area network built with two separate switched fabrics (red and blue) to increase reliability. Dual fabric.png
A storage area network built with two separate switched fabrics (red and blue) to increase reliability.

In the Fibre Channel Switched Fabric (FC-SW-6) topology, devices are connected to each other through one or more Fibre Channel switches. While this topology has the best scalability of the three FC topologies (the other two are Arbitrated Loop and point-to-point), [2] it is the only one requiring switches, which are costly hardware devices.

Visibility among devices (called nodes) in a fabric is typically controlled with Fibre Channel zoning.

Multiple switches in a fabric usually form a mesh network, with devices being on the "edges" ("leaves") of the mesh. Most Fibre Channel network designs employ two separate fabrics for redundancy. The two fabrics share the edge nodes (devices), but are otherwise unconnected. One of the advantages of such setup is capability of failover, meaning that in case one link breaks or a fabric goes out of order, datagrams can be sent via the second fabric.

The fabric topology allows the connection of up to the theoretical maximum of about 16 million devices, limited only by the available address space (224).

239 domains * 256 areas * 256 ports = 15,663,104 [3]

See also

Related Research Articles

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

<span class="mw-page-title-main">Network topology</span> Arrangement of the elements of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

<span class="mw-page-title-main">InfiniBand</span> High-speed, low-latency computer networking bus used in supercomputing

InfiniBand (IB) is a computer networking communications standard used in high-performance computing that features very high throughput and very low latency. It is used for data interconnect both among and within computers. InfiniBand is also used as either a direct or switched interconnect between servers and storage systems, as well as an interconnect between storage systems. It is designed to be scalable and uses a switched fabric network topology. By 2014, it was the most commonly used interconnect in the TOP500 list of supercomputers, until about 2016.

<span class="mw-page-title-main">PCI Express</span> Computer expansion bus standard

PCI Express, officially abbreviated as PCIe or PCI-e, is a high-speed serial computer expansion bus standard, designed to replace the older PCI, PCI-X and AGP bus standards. It is the common motherboard interface for personal computers' graphics cards, hard disk drive host adapters, SSDs, Wi-Fi and Ethernet hardware connections. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism, and native hot-swap functionality. More recent revisions of the PCIe standard provide hardware support for I/O virtualization.

Fibre Channel (FC) is a high-speed data transfer protocol providing in-order, lossless delivery of raw block data. Fibre Channel is primarily used to connect computer data storage to servers in storage area networks (SAN) in commercial data centers.

<span class="mw-page-title-main">Serial communication</span> Type of data transfer

In telecommunication and data transmission, serial communication is the process of sending data one bit at a time, sequentially, over a communication channel or computer bus. This is in contrast to parallel communication, where several bits are sent as a whole, on a link with several parallel channels.

<span class="mw-page-title-main">Host adapter</span> Computer hardware device

In computer hardware, a host controller, host adapter, or host bus adapter (HBA), connects a computer system bus, which acts as the host system, to other network and storage devices. The terms are primarily used to refer to devices for connecting SCSI, Fibre Channel and SATA devices. Devices for connecting to IDE, Ethernet, FireWire, USB and other systems may also be called host adapters.

<span class="mw-page-title-main">PCI-X</span> Computer bus and expansion card standard

PCI-X, short for Peripheral Component Interconnect eXtended, is a computer bus and expansion card standard that enhances the 32-bit PCI local bus for higher bandwidth demanded mostly by servers and workstations. It uses a modified protocol to support higher clock speeds, but is otherwise similar in electrical implementation. PCI-X 2.0 added speeds up to 533 MHz, with a reduction in electrical signal levels.

<span class="mw-page-title-main">Fibre Channel switch</span>

In the computer storage field, a Fibre Channel switch is a network switch compatible with the Fibre Channel (FC) protocol. It allows the creation of a Fibre Channel fabric, that is the core component of a storage area network (SAN). The fabric is a network of Fibre Channel devices which allows many-to-many communication, device name lookup, security, and redundancy. FC switches implement zoning, a mechanism that disables unwanted traffic between certain fabric nodes.

<span class="mw-page-title-main">Serial Attached SCSI</span> Point-to-point serial protocol for enterprise storage

In computing, Serial Attached SCSI (SAS) is a point-to-point serial protocol that moves data to and from computer-storage devices such as hard disk drives and tape drives. SAS replaces the older Parallel SCSI bus technology that first appeared in the mid-1980s. SAS, like its predecessor, uses the standard SCSI command set. SAS offers optional compatibility with Serial ATA (SATA), versions 2 and later. This allows the connection of SATA drives to most SAS backplanes or controllers. The reverse, connecting SAS drives to SATA backplanes, is not possible.

<span class="mw-page-title-main">RapidIO</span> Electrical connection technology

The RapidIO architecture is a high-performance packet-switched electrical connection technology. RapidIO supports messaging, read/write and cache coherency semantics. Based on industry-standard electrical specifications such as those for Ethernet, RapidIO can be used as a chip-to-chip, board-to-board, and chassis-to-chassis interconnect.

<span class="mw-page-title-main">Arbitrated loop</span>

The arbitrated loop, also known as FC-AL, is a Fibre Channel topology in which devices are connected in a one-way loop fashion in a ring topology. Historically it was a lower-cost alternative to a fabric topology. It allowed connection of many servers and computer storage devices without using then very costly Fibre Channel switches. The cost of the switches dropped considerably, so by 2007, FC-AL had become rare in server-to-storage communication. It is however still common within storage systems.

Advanced Telecommunications Computing Architecture is the largest specification effort in the history of the PCI Industrial Computer Manufacturers Group (PICMG), with more than 100 companies participating. Known as AdvancedTCA, the official specification designation PICMG 3.x was ratified by the PICMG organization in December 2002. AdvancedTCA is targeted primarily to requirements for "carrier grade" communications equipment, but has recently expanded its reach into more ruggedized applications geared toward the military/aerospace industries as well. This series of specifications incorporates the latest trends in high speed interconnect technologies, next-generation processors, and improved Reliability, Availability and Serviceability (RAS).

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. The computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

Fibre Channel Protocol (FCP) is the SCSI interface protocol utilising an underlying Fibre Channel connection. The Fibre Channel standards define a high-speed data transfer mechanism that can be used to connect workstations, mainframes, supercomputers, storage devices and displays. FCP addresses the need for very fast transfers of large volumes of information and could relieve system manufacturers from the burden of supporting a variety of channels and networks, as it provides one standard for networking, storage and data transfer. Some Fibre Channel characteristics are:

<span class="mw-page-title-main">Storage area network</span> Network which provides access to consolidated, block-level data storage

A storage area network (SAN) or storage network is a computer network which provides access to consolidated, block-level data storage. SANs are primarily used to access data storage devices, such as disk arrays and tape libraries from servers so that the devices appear to the operating system as direct-attached storage. A SAN typically is a dedicated network of storage devices not accessible through the local area network (LAN).

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

<span class="mw-page-title-main">LIO (SCSI target)</span> Open-source version of SCSI target

In computing, Linux-IO (LIO) Target is an open-source implementation of the SCSI target that has become the standard one included in the Linux kernel. Internally, LIO does not initiate sessions, but instead provides one or more Logical Unit Numbers (LUNs), waits for SCSI commands from a SCSI initiator, and performs required input/output data transfers. LIO supports common storage fabrics, including FCoE, Fibre Channel, IEEE 1394, iSCSI, iSCSI Extensions for RDMA (iSER), SCSI RDMA Protocol (SRP) and USB. It is included in most Linux distributions; native support for LIO in QEMU/KVM, libvirt, and OpenStack makes LIO also a storage option for cloud deployments.

<span class="mw-page-title-main">Torus interconnect</span> Type of geometry for connecting computer nodes

A torus interconnect is a switch-less network topology for connecting processing nodes in a parallel computer system.

Compute Express Link (CXL) is an open standard for high-speed central processing unit (CPU)-to-device and CPU-to-memory connections, designed for high performance data center computers. CXL is built on the PCI Express (PCIe) physical and electrical interface and includes PCIe-based block input/output protocol (CXL.io) and new cache-coherent protocols for accessing system memory (CXL.cache) and device memory (CXL.mem).

References

  1. Using Storage Area Networks. Que Publishing. 2002. p. 146. ISBN   978-0-7897-2574-5.
  2. Hausman, Kirk (2011-03-10). Sustainable Enterprise Architecture. CRC Press. p. 166. ISBN   978-1-4665-0899-6.
  3. Information Storage and Management: Storing, Managing, and Protecting Digital Information in Classic, Virtualized, and Cloud Environments. John Wiley & Sons. 2012-04-30. p. 109. ISBN   978-1-118-23696-3.