[https://datatracker.ietf.org/doc/html/rfc3720 3720]. Obsolete. sec. 3.2.6.3.1, p. 32. Obsoleted by Type \"iqn.\" (iSCSI Qualified Name)
\n "},"parts":[{"template":{"target":{"wt":"Ref RFC","href":"./Template:Ref_RFC"},"params":{"1":{"wt":"3720"},"section":{"wt":"3.2.6.3.1"},"p":{"wt":"32"},"quote":{"wt":"Type \"iqn.\" (iSCSI Qualified Name)"}},"i":0}}]}"> [10]
Type | . | Date | . | Naming Auth | : | String defined by example.com Naming Authority |
---|---|---|---|---|---|---|
iqn | . | 1992-01 | . | com.example | : | storage:diskarrays-sn-a8675309 |
iqn | . | 1992-01 | . | com.example | ||
iqn | . | 1992-01 | . | com.example | : | storage.tape1.sys1.xyz |
iqn | . | 1992-01 | . | com.example | : | storage.disk2.sys1.xyz |
eui.02004567A425678D
)naa.52004567BA64678D
)IQN format addresses occur most commonly. They are qualified by a date (yyyy-mm) because domain names can expire or be acquired by another entity.
The IEEE Registration authority provides EUI in accordance with the EUI-64 standard. NAA is part OUI which is provided by the IEEE Registration Authority. NAA name formats were added to iSCSI in RFC 3980, to provide compatibility with naming conventions used in Fibre Channel and Serial Attached SCSI (SAS) storage technologies.
Usually, an iSCSI participant can be defined by three or four fields:
iSCSI initiators can locate appropriate storage resources using the Internet Storage Name Service (iSNS) protocol. In theory, iSNS provides iSCSI SANs with the same management model as dedicated Fibre Channel SANs. In practice, administrators can satisfy many deployment goals for iSCSI without using iSNS.
iSCSI initiators and targets prove their identity to each other using CHAP, which includes a mechanism to prevent cleartext passwords from appearing on the wire. By itself, CHAP is vulnerable to dictionary attacks, spoofing, and reflection attacks. If followed carefully, the best practices for using CHAP within iSCSI reduce the surface for these attacks and mitigate the risks. [11]
Additionally, as with all IP-based protocols, IPsec can operate at the network layer. The iSCSI negotiation protocol is designed to accommodate other authentication schemes, though interoperability issues limit their deployment.
To ensure that only valid initiators connect to storage arrays, administrators most commonly run iSCSI only over logically isolated backchannel networks. In this deployment architecture, only the management ports of storage arrays are exposed to the general-purpose internal network, and the iSCSI protocol itself is run over dedicated network segments or VLANs. This mitigates authentication concerns; unauthorized users are not physically provisioned for iSCSI, and thus cannot talk to storage arrays. However, it also creates a transitive trust problem, in that a single compromised host with an iSCSI disk can be used to attack storage resources for other hosts.
While iSCSI can be logically isolated from the general network using VLANs only, it is still no different from any other network equipment and may use any cable or port as long as there is a completed signal path between source and target. Just a single cabling mistake by a network technician can compromise the barrier of logical separation, and an accidental bridging may not be immediately detected because it does not cause network errors.
In order to further differentiate iSCSI from the regular network and prevent cabling mistakes when changing connections, administrators may implement self-defined color-coding and labeling standards, such as only using yellow-colored cables for the iSCSI connections and only blue cables for the regular network, and clearly labeling ports and switches used only for iSCSI.
While iSCSI could be implemented as just a VLAN cluster of ports on a large multi-port switch that is also used for general network usage, the administrator may instead choose to use physically separate switches dedicated to iSCSI VLANs only, to further prevent the possibility of an incorrectly connected cable plugged into the wrong port bridging the logical barrier.
Because iSCSI aims to consolidate storage for many servers into a single storage array, iSCSI deployments require strategies to prevent unrelated initiators from accessing storage resources. As a pathological example, a single enterprise storage array could hold data for servers variously regulated by the Sarbanes–Oxley Act for corporate accounting, HIPAA for health benefits information, and PCI DSS for credit card processing. During an audit, storage systems must demonstrate controls to ensure that a server under one regime cannot access the storage assets of a server under another.
Typically, iSCSI storage arrays explicitly map initiators to specific target LUNs; an initiator authenticates not to the storage array, but to the specific storage asset it intends to use. However, because the target LUNs for SCSI commands are expressed both in the iSCSI negotiation protocol and in the underlying SCSI protocol, care must be taken to ensure that access control is provided consistently.
For the most part, iSCSI operates as a cleartext protocol that provides no cryptographic protection for data in motion during SCSI transactions. As a result, an attacker who can listen in on iSCSI Ethernet traffic can: [12]
These problems do not occur only with iSCSI, but rather apply to any SAN protocol without cryptographic security. IP-based security protocols, such as IPsec, can provide standards-based cryptographic protection to this traffic.
The dates in the following table denote the first appearance of a native driver in each operating system. Third-party drivers for Windows and Linux were available as early as 2001, specifically for attaching IBM's IP Storage 200i appliance. [13]
OS | First release date | Version | Features |
---|---|---|---|
IBM i | 2006-10 | V5R4M0 (as i5/OS) | Target, Multipath |
VMware ESX | 2006-06 | ESX 3.0, ESX 4.0, ESXi 5.x, ESXi 6.x | Initiator, Multipath |
AIX | 2002-10 | AIX 5.3 TL10, AIX 6.1 TL3 | Initiator, Target |
Windows | 2003-06 | 2000, XP Pro, 2003, Vista, 2008, 2008 R2, 7, 8, Server 2012, 8.1, Server 2012 R2, 10, Server 2016, 11, Server 2019 | Initiator, Target, [b] Multipath |
NetWare | 2003-08 | NetWare 5.1, 6.5, & OES | Initiator, Target |
HP-UX | 2003-10 | HP 11i v1, HP 11i v2, HP 11i v3 | Initiator |
Solaris | 2002-05 | Solaris 10, OpenSolaris | Initiator, Target, Multipath, iSER |
Linux | 2005-06 | 2.6.12, 3.1 | Initiator (2.6.12), Target (3.1), Multipath, iSER, VAAI [c] |
OpenBSD | 2009-10 | 4.9 | Initiator |
NetBSD | 2002-06 | 4.0, 5.0 | Initiator (5.0), Target (4.0) |
FreeBSD | 2008-02 | 7.0 | Initiator (7.0), Target (10.0), Multipath, iSER, VAAI [c] |
OpenVMS | 2002-08 | 8.3-1H1 | Initiator, Multipath |
macOS | 2008-07 | 10.4— | N/A [d] |
Most iSCSI targets involve disk, though iSCSI tape and medium-changer targets are popular as well. So far, physical devices have not featured native iSCSI interfaces on a component level. Instead, devices with Parallel SCSI or Fibre Channel interfaces are bridged by using iSCSI target software, external bridges, or controllers internal to the device enclosure.
Alternatively, it is possible to virtualize disk and tape targets. Rather than representing an actual physical device, an emulated virtual device is presented. The underlying implementation can deviate drastically from the presented target as is done with virtual tape library (VTL) products. VTLs use disk storage for storing data written to virtual tapes. As with actual physical devices, virtual targets are presented by using iSCSI target software, external bridges, or controllers internal to the device enclosure.
In the security products industry, some manufacturers use an iSCSI RAID as a target, with the initiator being either an IP-enabled encoder or camera.
Multiple systems exist that allow Fibre Channel, SCSI and SAS devices to be attached to an IP network for use via iSCSI. They can be used to allow migration from older storage technologies, access to SANs from remote servers and the linking of SANs over IP networks. An iSCSI gateway bridges IP servers to Fibre Channel SANs. The TCP connection is terminated at the gateway, which is implemented on a Fibre Channel switch or as a standalone appliance.
Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices, best known for its use with storage devices such as hard disk drives. SCSI was introduced in the 1980s and has seen widespread use on servers and high-end workstations, with new SCSI standards being published as recently as SAS-4 in 2017.
Trivial File Transfer Protocol (TFTP) is a simple lockstep File Transfer Protocol which allows a client to get a file from or put a file onto a remote host. One of its primary uses is in the early stages of nodes booting from a local area network. TFTP has been used for this application because it is very simple to implement.
Fibre Channel (FC) is a high-speed data transfer protocol providing in-order, lossless delivery of raw block data. Fibre Channel is primarily used to connect computer data storage to servers in storage area networks (SAN) in commercial data centers.
In computer hardware a host controller, host adapter or host bus adapter (HBA) connects a computer system bus which acts as the host system to other network and storage devices. The terms are primarily used to refer to devices for connecting SCSI, SAS, NVMe, Fibre Channel and SATA devices. Devices for connecting to FireWire, USB and other devices may also be called host controllers or host adapters.
In computing, the Preboot eXecution Environment specification describes a standardized client–server environment that boots a software assembly, retrieved from a network, on PXE-enabled clients. On the client side it requires only a PXE-capable network interface controller (NIC), and uses a small set of industry-standard network protocols such as Dynamic Host Configuration Protocol (DHCP) and Trivial File Transfer Protocol (TFTP).
Clariion is a discontinued SAN disk array manufactured and sold by EMC Corporation, it occupied the entry-level and mid-range of EMC's SAN disk array products. In 2011, EMC introduced the EMC VNX Series, designed to replace both the Clariion and Celerra products.
TCP offload engine (TOE) is a technology used in some network interface cards (NIC) to offload processing of the entire TCP/IP stack to the network controller. It is primarily used with high-speed network interfaces, such as gigabit Ethernet and 10 Gigabit Ethernet, where processing overhead of the network stack becomes significant. TOEs are often used as a way to reduce the overhead associated with Internet Protocol (IP) storage protocols such as iSCSI and Network File System (NFS).
In computer storage, a logical unit number, or LUN, is a number used to identify a logical unit, which is a device addressed by the SCSI protocol or by Storage Area Network protocols that encapsulate SCSI, such as Fibre Channel or iSCSI.
In computing, the proposed Internet Storage Name Service (iSNS) protocol allows automated discovery, management and configuration of iSCSI and Fibre Channel devices (using iFCP gateways) on a TCP/IP network.
In computer data storage, a SCSI initiator is the endpoint that initiates a SCSI session, that is, sends a SCSI command. The initiator usually does not provide any Logical Unit Numbers (LUNs).
ATA over Ethernet (AoE) is a network protocol developed by the Brantley Coile Company, designed for simple, high-performance access of block storage devices over Ethernet networks. It is used to build storage area networks (SANs) with low-cost, standard technologies.
In Fibre Channel protocol, a registered state change notification (RSCN) is a Fibre Channel fabric's notification sent to all specified nodes in case of any major fabric changes. This allows nodes to immediately gain knowledge about the fabric and react accordingly.
The iSCSI Extensions for RDMA (iSER) is a computer network protocol that extends the Internet Small Computer System Interface (iSCSI) protocol to use Remote Direct Memory Access (RDMA). RDMA can be provided by the Transmission Control Protocol (TCP) with RDMA services (iWARP), which uses an existing Ethernet setup and therefore has lower hardware costs, RoCE, which does not need the TCP layer and therefore provides lower latency, or InfiniBand. iSER permits data to be transferred directly into and out of SCSI computer memory buffers without intermediate data copies and with minimal CPU involvement.
Host-based zoning can include WWN or LUN masking, and is typically known as “persistent binding.”
On Linux, network block device (NBD) is a network protocol that can be used to forward a block device from one machine to a second machine. As an example, a local machine can access a hard disk drive that is attached to another computer.
Fibre Channel over Ethernet (FCoE) is a computer network technology that encapsulates Fibre Channel frames over Ethernet networks. This allows Fibre Channel to use 10 Gigabit Ethernet networks while preserving the Fibre Channel protocol. The specification was part of the International Committee for Information Technology Standards T11 FC-BB-5 standard published in 2009. FCoE did not see widespread adoption.
A storage area network (SAN) or storage network is a computer network which provides access to consolidated, block-level data storage. SANs are primarily used to access data storage devices, such as disk arrays and tape libraries from servers so that the devices appear to the operating system as direct-attached storage. A SAN typically is a dedicated network of storage devices not accessible through the local area network (LAN).
The Linux-IOTarget (LIO) is an open-source Small Computer System Interface (SCSI) target implementation included with the Linux kernel.
SCST is a GPL licensed SCSI target software stack. The design goals of this software stack are high performance, high reliability, strict conformance to existing SCSI standards, being easy to extend and easy to use. SCST does not only support multiple SCSI protocols but also supports multiple local storage interfaces and also storage drivers implemented in user-space via the scst_user driver.
Enterprise Storage OS, also known as ESOS, is a Linux distribution that serves as a block-level storage server in a storage area network (SAN). ESOS is composed of open-source software projects that are required for a Linux distribution and several proprietary build and install time options. The SCST project is the core component of ESOS; it provides the back-end storage functionality.
Type "iqn." (iSCSI Qualified Name)