Clenshaw algorithm

Last updated

In numerical analysis, the Clenshaw algorithm, also called Clenshaw summation, is a recursive method to evaluate a linear combination of Chebyshev polynomials. [1] [2] The method was published by Charles William Clenshaw in 1955. It is a generalization of Horner's method for evaluating a linear combination of monomials.

Contents

It generalizes to more than just Chebyshev polynomials; it applies to any class of functions that can be defined by a three-term recurrence relation. [3]

Clenshaw algorithm

In full generality, the Clenshaw algorithm computes the weighted sum of a finite series of functions :

where is a sequence of functions that satisfy the linear recurrence relation

where the coefficients and are known in advance.

The algorithm is most useful when are functions that are complicated to compute directly, but and are particularly simple. In the most common applications, does not depend on , and is a constant that depends on neither nor .

To perform the summation for given series of coefficients , compute the values by the "reverse" recurrence formula:

Note that this computation makes no direct reference to the functions . After computing and , the desired sum can be expressed in terms of them and the simplest functions and :

See Fox and Parker [4] for more information and stability analyses.

Examples

Horner as a special case of Clenshaw

A particularly simple case occurs when evaluating a polynomial of the form

The functions are simply

and are produced by the recurrence coefficients and .

In this case, the recurrence formula to compute the sum is

and, in this case, the sum is simply

which is exactly the usual Horner's method.

Special case for Chebyshev series

Consider a truncated Chebyshev series

The coefficients in the recursion relation for the Chebyshev polynomials are

with the initial conditions

Thus, the recurrence is

and the final sum is

One way to evaluate this is to continue the recurrence one more step, and compute

(note the doubled a0 coefficient) followed by

Meridian arc length on the ellipsoid

Clenshaw summation is extensively used in geodetic applications. [2] A simple application is summing the trigonometric series to compute the meridian arc distance on the surface of an ellipsoid. These have the form

Leaving off the initial term, the remainder is a summation of the appropriate form. There is no leading term because .

The recurrence relation for is

making the coefficients in the recursion relation

and the evaluation of the series is given by

The final step is made particularly simple because , so the end of the recurrence is simply ; the term is added separately:

Note that the algorithm requires only the evaluation of two trigonometric quantities and .

Difference in meridian arc lengths

Sometimes it necessary to compute the difference of two meridian arcs in a way that maintains high relative accuracy. This is accomplished by using trigonometric identities to write

Clenshaw summation can be applied in this case [5] provided we simultaneously compute and perform a matrix summation,

where

The first element of is the average value of and the second element is the average slope. satisfies the recurrence relation

where

takes the place of in the recurrence relation, and . The standard Clenshaw algorithm can now be applied to yield

where are 2×2 matrices. Finally we have

This technique can be used in the limit and to simultaneously compute and the derivative , provided that, in evaluating and , we take .

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Astronomical coordinate systems</span> System for specifying positions of celestial objects

In astronomy, coordinate systems are used for specifying positions of celestial objects relative to a given reference frame, based on physical reference points available to a situated observer. Coordinate systems in astronomy can specify an object's position in three-dimensional space or plot merely its direction on a celestial sphere, if the object's distance is unknown or trivial.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

The Kerr–Newman metric is the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged and rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions; that is, it is a solution to the Einstein–Maxwell equations that account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

In probability and statistics, a circular distribution or polar distribution is a probability distribution of a random variable whose values are angles, usually taken to be in the range [0, 2π). A circular distribution is often a continuous probability distribution, and hence has a probability density, but such distributions can also be discrete, in which case they are called circular lattice distributions. Circular distributions can be used even when the variables concerned are not explicitly angles: the main consideration is that there is not usually any real distinction between events occurring at the opposite ends of the range, and the division of the range could notionally be made at any point.

The Schwarzschild solution describes spacetime under the influence of a massive, non-rotating, spherically symmetric object. It is considered by some to be one of the simplest and most useful solutions to the Einstein field equations.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In the mathematical description of general relativity, the Boyer–Lindquist coordinates are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole.

<span class="mw-page-title-main">Voigt effect</span>

The Voigt effect is a magneto-optical phenomenon which rotates and elliptizes linearly polarised light sent into an optically active medium. The effect is named after the German scientist Woldemar Voigt who discovered it in vapors. Unlike many other magneto-optical effects such as the Kerr or Faraday effect which are linearly proportional to the magnetization, the Voigt effect is proportional to the square of the magnetization and can be seen experimentally at normal incidence. There are also other denominations for this effect, used interchangeably in the modern scientific literature: the Cotton–Mouton effect and magnetic-linear birefringence, with the latter reflecting the physical meaning of the effect.

In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

The Carter constant is a conserved quantity for motion around black holes in the general relativistic formulation of gravity. Its SI base units are kg2⋅m4⋅s−2. Carter's constant was derived for a spinning, charged black hole by Australian theoretical physicist Brandon Carter in 1968. Carter's constant along with the energy , axial angular momentum , and particle rest mass provide the four conserved quantities necessary to uniquely determine all orbits in the Kerr–Newman spacetime.

References

  1. Clenshaw, C. W. (July 1955). "A note on the summation of Chebyshev series". Mathematical Tables and Other Aids to Computation. 9 (51): 118. doi: 10.1090/S0025-5718-1955-0071856-0 . ISSN   0025-5718. Note that this paper is written in terms of the Shifted Chebyshev polynomials of the first kind .
  2. 1 2 Tscherning, C. C.; Poder, K. (1982), "Some Geodetic applications of Clenshaw Summation" (PDF), Bolletino di Geodesia e Scienze Affini, 41 (4): 349–375, archived from the original (PDF) on 2007-06-12, retrieved 2012-08-02
  3. Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), "Section 5.4.2. Clenshaw's Recurrence Formula", Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN   978-0-521-88068-8
  4. Fox, Leslie; Parker, Ian B. (1968), Chebyshev Polynomials in Numerical Analysis, Oxford University Press, ISBN   0-19-859614-6
  5. Karney, C. F. F. (2014), Clenshaw evaluation of differenced sums