Cold-cranking simulator

Last updated

The cold-cranking simulator (CCS) is a device used to determine the low temperature performance of lubricants, when starting a cold engine (i.e. cold-cranking). In this condition, the only energy available to turn the engine comes from the starter motor and the battery, and it has been widely assumed that the system acts as a constant power viscometer. The use of this device for this purpose is standardized as ASTM D5293. [1]

Contents

Test development

Figure 1 of US Patent 3350922 US3350922-figure1.png
Figure 1 of US Patent 3350922

The cold-cranking simulator was invented [2] developed by Dr. Dae Sik Kim of Esso Research and Engineering Company in 1964. The first prototype was built on his apartment kitchen table with Unimat, a miniature lathe/milling machine, to minimize and avoid proper company procedures. He reported the results of his developmental work, titled: "Results of Cold Cranking Simulator and a Comment" at SAE Fuels and Lubricants Meeting in Palmer house, Chicago on May 18, 1965. Although the device was initially called "Kimometer", he refused to put his name on it and he named it for what it was intended.[ citation needed ]

Purpose of this test

Cold-cranking simulator simulates rheological process of "an average engine" during cold starting. The engine's starter motor was replaced with a small series wound universal motor, a typical sewing machine motor, and the engine, with a specially designed cold cylinder and an insulated cylindrical rotor with a pair of parallel flats. The sample oil is continuously sheared under a periodically varying shear rate, lower when the flats pass. Oils in real engines are similarly sheared, high in the journal bearings, oscillatory on piston rings and low in galley. Most developmental work went into proper sizing of the flat to simulate relative shear rate distribution in an "average engine". Both an engine and simulator is calibrated with a set of Newtonian standard crank case oils with known viscosities.[ citation needed ]

When SAE and ASTM decided to use the simulator for their future standard instrument, Esso R & E Company gave a free exclusive license to Cannon Instrument Co of State College, PA to avoid conflict of interest.[ citation needed ]

During the past four decades many marginal improvements have been made but the basic design and idea remains the same. Various generations of the CCS have been made over the years, with the latest Cannon CCS-2100 utilising Peltier cooling and an associated chiller to operate essentially the same instrument as the original 1960s design.[ citation needed ]

In the late 1980s Ravenfield Designs, Heywood, England, redesigned the entire system from the ground up, utilising a novel system to accurately model the old instruments and created a new machine offering higher repeatability and reproducibility than former methods. The Ravenfield apparatus, designated Model CS is markedly smaller than the Cannon apparatus, incorporating the cooler, the PC, the instrument and sample pumping in a 600 mm square footprint.[ citation needed ]

The Society of Automotive Engineers adopted the CCS test as part of the J300 [3] specification, and is the subject of ASTM test method D5293. [1]

Related Research Articles

A lubricant is a substance that helps to reduce friction between surfaces in mutual contact, which ultimately reduces the heat generated when the surfaces move. It may also have the function of transmitting forces, transporting foreign particles, or heating or cooling the surfaces. The property of reducing friction is known as lubricity.

Mobil is a petroleum brand owned and operated by American oil and gas corporation ExxonMobil. The brand was formerly owned and operated by an oil and gas corporation of the same name, which itself merged with Exxon to form ExxonMobil in 1999.

A viscometer is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Thus, a rheometer can be considered as a special type of viscometer. Viscometers can measure only constant viscosity, that is, viscosity that does not change with flow conditions.

<span class="mw-page-title-main">Motor oil</span> Lubricant used for lubrication of internal combustion engines

Motor oil, engine oil, or engine lubricant is any one of various substances used for the lubrication of internal combustion engines. They typically consist of base oils enhanced with various additives, particularly antiwear additives, detergents, dispersants, and, for multi-grade oils, viscosity index improvers. The main function of motor oil is to reduce friction and wear on moving parts and to clean the engine from sludge and varnish (detergents). It also neutralizes acids that originate from fuel and from oxidation of the lubricant (detergents), improves the sealing of piston rings, and cools the engine by carrying heat away from moving parts.

<span class="mw-page-title-main">Hydraulic fluid</span> Medium to transfer power in hydraulic machinery

A hydraulic fluid or hydraulic liquid is the medium by which power is transferred in hydraulic machinery. Common hydraulic fluids are based on mineral oil or water. Examples of equipment that might use hydraulic fluids are excavators and backhoes, hydraulic brakes, power steering systems, automatic transmissions, garbage trucks, aircraft flight control systems, lifts, and industrial machinery.

<span class="mw-page-title-main">Ignition system</span> Electric spark system to ignite a fuel-air mixture

Ignition systems are used by heat engines to initiate combustion by igniting the fuel-air mixture. In a spark ignition versions of the internal combustion engine, the ignition system creates a spark to ignite the fuel-air mixture just before each combustion stroke. Gas turbine engines and rocket engines normally use an ignition system only during start-up.

<span class="mw-page-title-main">Synthetic oil</span> Lubricant consisting of artificially made chemical compounds

Synthetic oil is a lubricant consisting of chemical compounds that are artificially modified or synthesised. Synthetic lubricants can be manufactured using chemically modified petroleum components rather than whole crude oil, but can also be synthesized from other raw materials. The base material, however, is still overwhelmingly crude oil that is distilled and then modified physically and chemically. The actual synthesis process and composition of additives is generally a commercial trade secret and will vary among producers.

Internal combustion engine cooling uses either air or liquid to remove the waste heat from an internal combustion engine. For small or special purpose engines, cooling using air from the atmosphere makes for a lightweight and relatively simple system. Watercraft can use water directly from the surrounding environment to cool their engines. For water-cooled engines on aircraft and surface vehicles, waste heat is transferred from a closed loop of water pumped through the engine to the surrounding atmosphere by a radiator.

<span class="mw-page-title-main">O-ring</span> Mechanical, toroid gasket that seals an interface

An O-ring, also known as a packing or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a round cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, forming a seal at the interface.

<span class="mw-page-title-main">Gear oil</span> Lubricant used in vehicles and machinery

Gear oil is a lubricant made specifically for transmissions, transfer cases, and differentials in automobiles, trucks, and other machinery. It has high viscosity and usually contains organosulfur compounds. Some modern automatic transaxles do not use a heavy oil at all but lubricate with the lower viscosity hydraulic fluid, which is available at pressure within the automatic transmission. Gear oils account for about 20% of the lubricant market.

The viscosity index (VI) is an arbitrary, unit-less measure of a fluid's change in viscosity relative to temperature change. It is mostly used to characterize the viscosity-temperature behavior of lubricating oils. The lower the VI, the more the viscosity is affected by changes in temperature. The higher the VI, the more stable the viscosity remains over some temperature range. The VI was originally measured on a scale from 0 to 100; however, advancements in lubrication science have led to the development of oils with much higher VIs.

Grease is a solid or semisolid lubricant formed as a dispersion of thickening agents in a liquid lubricant. Grease generally consists of a soap emulsified with mineral or vegetable oil.

<span class="mw-page-title-main">DEXRON</span> Trade name for a group of technical specifications for automatic transmission fluid

Dexron is the trade name for a group of technical specifications for automatic transmission fluid (ATF) created by General Motors (GM). The name was first registered as a trademark and later evolved into a brand of GM. GM licenses the name and specifications to companies that manufacture the fluid and sell it under their own brand names. Not all Dexron fluids are licensed by GM for reselling under another brand name. To be licensed, the product must have a license number that begins with the letters B through J and include a "Dexron Approved" sticker on its container. Like many automobile manufacturers, GM uses transmissions sourced from other suppliers or transmission manufacturers around the world; many of these may use their own unique fluid.

<span class="mw-page-title-main">Zinc dithiophosphate</span> Lubricant additive

Zinc dialkyldithiophosphates are a family of coordination compounds developed in the 1940s that feature zinc bound to the anion of a dialkyldithiophosphoric salt. These uncharged compounds are not salts. They are soluble in nonpolar solvents, and the longer-chain derivatives easily dissolve in mineral and synthetic oils used as lubricants. They come under CAS number 68649-42-3. In aftermarket oil additives, the percentage of ZDDP ranges approximately between 2 and 15%. Zinc dithiophosphates have many names, including ZDDP, ZnDTP, and ZDP.

<span class="mw-page-title-main">Shell Rotella</span> Brand of heavy-duty engine lubricant

Shell Rotella is a line of heavy-duty engine lubrication products produced by Shell plc. The line includes engine oils, gear oils and coolants. The oil carries both the American Petroleum Institute (API) diesel "C" rating as well as the API gasoline engine "S" rating. Ratings differ based on the oil. Rotella oils, like the T3 15W-40, meet both the API CJ-4 and SM specifications, and may be used in both gasoline and diesel engines. However, it is formulated specifically for vehicles without catalytic converters, containing phosphorus levels beyond the 600–800 ppm range. Therefore, Rotella is not recommended for gasoline vehicles with catalytic converters due to the higher risk of damaging these emission controls. Newer formulations of Rotella T6 however are API SM rated as safe for pre-2011 gasoline vehicles.

<span class="mw-page-title-main">Automotive oil recycling</span> The process of recycling used engine and motor oils

Automotive oil recycling involves the recycling of used oils and the creation of new products from the recycled oils, and includes the recycling of motor oil and hydraulic oil. Oil recycling also benefits the environment: increased opportunities for consumers to recycle oil lessens the likelihood of used oil being dumped on lands and in waterways. For example, one gallon of motor oil dumped into waterways has the potential to pollute one million gallons of water.

Space tribology is a discipline in the field of tribology which deals with tribological systems for spacecraft applications. Research in the field aims to design reliable tribological systems that can withstand the harsh environment of space.

Pour point depressants are used to allow the use of petroleum based mineral oils at lower temperatures. The lowest temperature at which a fuel or oil will pour is called a pour point. Wax crystals, which form at lower temperatures, may interfere with lubrication of mechanical equipment. High-quality pour point depressants can lower a pour point of an oil additive by as much as 40°C.

The mini-rotary viscometer is a device used to measure the pumpability of an engine oil at low temperatures. Engine oils must meet viscometric standards including those determined by the MRV in order to be classifiable within SAE J300 viscosity grades. The requirement was added after the winters of 1980-81 and 1981-82 caused major pumpability field problems in the US and Europe.

<span class="mw-page-title-main">SAE J300</span> Standard for engine oil

SAE J300 is a standard that defines the viscometric properties of mono- and multigrade engine oils, maintained by SAE International. Key parameters for engine oil viscometrics are the oil's kinematic viscosity, its high temperature-high shear viscosity measured by the tapered bearing simulator, and low temperature properties measured by the cold-cranking simulator and mini-rotary viscometer. This standard is commonly used throughout the world, and standards organizations that do so include API and ILSAC, and ACEA.

References

  1. 1 2 ASTM D5293-17a, Standard Test Method for Apparent Viscosity of Engine Oils and Base Stocks Between –10 °C and –35 °C Using Cold-Cranking Simulator. West Conshohocken, PA: ASTM International. 2017. doi:10.1520/D5293-17A.
  2. USpatent 3350922,Kim Dae Sik&Gerald K. Vick,"Engine viscosity simulator",issued 1967-11-07, assigned to Esso Research and Engineering Company
  3. http://www.sae.org/servlets/pressRoom?OBJECT_TYPE=PressReleases&PAGE=showRelease&RELEASE_ID=109 SAE J300 specification