Cold spray additive manufacturing

Last updated

Cold spray additive manufacturing (CSAM) (also called cold spray 3D printing) is a particular application of cold spraying, able to fabricate freestanding parts or to build features on existing components. During the process, fine powder particles are accelerated in a high-velocity compressed gas stream, and upon the impact on a substrate or backing plate, deform and bond together creating a layer. Moving the nozzle over a substrate repeatedly, a deposit is building up layer-by-layer, to form a part or component. If an industrial robot or computer controlled manipulator controls the spray gun movements, complex shapes can be created. To achieve a 3D shape, there are two different approaches. First, to fix the substrate and move the cold spray gun/nozzle using a robotic arm; the second one is to move the substrate with a robotic arm, and keep the spray-gun nozzle fixed. There is also a possibility to combine these two approaches either using two robotic arms [1] or other manipulators. [2] The process always requires a substrate and uses only powder as raw material.

Contents

This technique is distinct from selective laser melting or electron-beam additive manufacturing or other additive manufacturing process using laser or electron beam for melting the feedstock materials.

History

The origins of the cold spray process go back to the beginning of the 20th century, when it was developed and patented by Thurston. [3] The process was further investigated by in the 1950s by Rocheville [4] [3] and was re-discovered in the 1980s at the Institute of Theoretical and Applied Mechanics of the Russian Academy of Science [5] and developed as a coating technology. The process started to be employed for additive repair and fabrication of freeform structures, that can be considered as additive manufacturing, at the beginning of the 21st century, when the first commercial cold spray system was introduced in the market. [6]

Process

Additive manufacturing employing the process of cold spraying and its benefits can be considered as a deposition process, capable to build freeform parts and structures at high rates. Since it is a solid-state coating deposition process, during the process no melting of the feedstock material (metal powder) occurs, there are no heat related distortion and no protective atmosphere required, which enables to build up structures layer-by-layer. Theoretically, it allows for manufacture without size limitations for fabricating individual components or repairing damaged components.

The largest 3D printer or Additive Manufacturing machine utilizing cold spray can build parts up to 9×3×1.5 m. [7] During the cold spray process, the impacting particles create the layer, whose thickness can differ, based on the spray gun travel speed against the substrate and the feedstock material feed rate, building the structure layer-by-layers.

Materials

In cold spraying, the principle of the process is based on plastic deformation of the feedstock powder particles, therefore it is suitable to deposit with this technique mainly pure metals and alloys, but also metallic glasses, metal matrix composites and in some cases polymers. [4] The research and development activities recently focusing on a few most challenging materials for the aircraft, space and defence industry such as aluminum alloys, [8] nickel base superalloys, [9] [10] different steel grades [11] [12] and titanium alloys [13] [14]

Applications

Space and aerospace applications

Tool and mould making

Forming, casting and stamping tools with conformal cooling and heating conducting elements, enabling shorter cycle times and significantly longer lifetime of these tools [18] [19]

Defence applications

Titanium drones. Titomic built a 1.8 meter quadcopter at their R&D Bureau in Melbourne, Australia using their version CSAM. The article also talks about Titomic being contracted to make test parts for Boeing. [20]

Other applications

Difference from other AM methods

The most significant differences between the cold spray additive manufacturing process and other additive manufacturing processes are the low temperature, solid state of the process, avoiding melting the feedstock material.

Benefits

Drawbacks

Equipment producers

See also

3D printing
Electron-beam freeform fabrication
Selective laser sintering
Selective laser melting

Related Research Articles

<span class="mw-page-title-main">Metallurgy</span> Field of science that studies the physical and chemical behavior of metals

Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys.

<span class="mw-page-title-main">Selective laser sintering</span> 3D printing technique

Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material, aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure. It is similar to selective laser melting; the two are instantiations of the same concept but differ in technical details. SLS is a relatively new technology that so far has mainly been used for rapid prototyping and for low-volume production of component parts. Production roles are expanding as the commercialization of AM technology improves.

<span class="mw-page-title-main">3D printing</span> Additive process used to make a three-dimensional object

3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with the material being added together, typically layer by layer.

<span class="mw-page-title-main">Superalloy</span> Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.

Laser powder forming, also known by the proprietary name is an additive manufacturing technology developed for fabricating metal parts directly from a computer-aided design (CAD) solid model by using a metal powder injected into a molten pool created by a focused, high-powered laser beam. This technique is also equivalent to several trademarked techniques that have the monikers direct metal deposition (DMD), and laser consolidation (LC). Compared to processes that use powder beds, such as selective laser melting (SLM) objects created with this technology can be substantially larger, even up to several feet long.

Titanium powder metallurgy (P/M) offers the possibility of creating net shape or near net shape parts without the material loss and cost associated with having to machine intricate components from wrought billet. Powders can be produced by the blended elemental technique or by pre-alloying and then consolidated by metal injection moulding, hot isostatic pressing, direct powder rolling or laser engineered net shaping.

Spray forming, also known as spray casting, spray deposition and in-situ compaction, is a method of casting near net shape metal components with homogeneous microstructures via the deposition of semi-solid sprayed droplets onto a shaped substrate. In spray forming an alloy is melted, normally in an induction furnace, then the molten metal is slowly poured through a conical tundish into a small-bore ceramic nozzle. The molten metal exits the furnace as a thin free-falling stream and is broken up into droplets by an annular array of gas jets, and these droplets then proceed downwards, accelerated by the gas jets to impact onto a substrate. The process is arranged such that the droplets strike the substrate whilst in the semi-solid condition, this provides sufficient liquid fraction to 'stick' the solid fraction together. Deposition continues, gradually building up a spray formed billet of metal on the substrate.

<span class="mw-page-title-main">Thermal spraying</span> Coating process for applying heated materials to a surface

Thermal spraying techniques are coating processes in which melted materials are sprayed onto a surface. The "feedstock" is heated by electrical or chemical means.

<span class="mw-page-title-main">Cold spraying</span> Coating deposition method

Gas dynamic cold spraying or cold spraying (CS) is a coating deposition method. Solid powders are accelerated in a supersonic gas jet to velocities up to ca. 1200 m/s. During impact with the substrate, particles undergo plastic deformation and adhere to the surface. To achieve a uniform thickness the spraying nozzle is scanned along the substrate. Metals, polymers, ceramics, composite materials and nanocrystalline powders can be deposited using cold spraying. The kinetic energy of the particles, supplied by the expansion of the gas, is converted to plastic deformation energy during bonding. Unlike thermal spraying techniques, e.g., plasma spraying, arc spraying, flame spraying, or high velocity oxygen fuel (HVOF), the powders are not melted during the spraying process.

Electron-beam additive manufacturing, or electron-beam melting (EBM) is a type of additive manufacturing, or 3D printing, for metal parts. The raw material is placed under a vacuum and fused together from heating by an electron beam. This technique is distinct from selective laser sintering as the raw material fuses having completely melted.

Electron-beam freeform fabrication (EBF3) is an additive manufacturing process that builds near-net-shape parts. It requires far less raw material and finish machining than traditional manufacturing methods. EBF3 is done in a vacuum chamber where an electron beam is focused on a constantly feeding source of metal, which is melted and applied as called for by a three-dimensional layered drawing - one layer at a time - on top of a rotating metallic substrate until the part is complete.

<span class="mw-page-title-main">Selective laser melting</span> 3D printing technique

Selective laser melting (SLM) is one of many proprietary names for a metal additive manufacturing (AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM standard term is powder bed fusion (PBF). PBF is a rapid prototyping, 3D printing, or additive manufacturing technique designed to use a high power-density laser to melt and fuse metallic powders together.

Cladding is the bonding together of dissimilar metals. It is different from fusion welding or gluing as a method to fasten the metals together. Cladding is often achieved by extruding two metals through a die as well as pressing or rolling sheets together under high pressure.

Laser Rapid Manufacturing (LRM) is one of the advanced additive manufacturing processes that is capable of fabricating engineering components directly from a solid model.

<span class="mw-page-title-main">Fused filament fabrication</span> 3D printing process

Fused filament fabrication (FFF), also known as fused deposition modeling, or filament freeform fabrication, is a 3D printing process that uses a continuous filament of a thermoplastic material. Filament is fed from a large spool through a moving, heated printer extruder head, and is deposited on the growing work. The print head is moved under computer control to define the printed shape. Usually the head moves in two dimensions to deposit one horizontal plane, or layer, at a time; the work or the print head is then moved vertically by a small amount to begin a new layer. The speed of the extruder head may also be controlled to stop and start deposition and form an interrupted plane without stringing or dribbling between sections. "Fused filament fabrication" was coined by the members of the RepRap project to give an acronym (FFF) that would be legally unconstrained in its use.

3D metal moulding, also referred to as metal injection moulding or (MIM), is used to manufacture components with complex geometries. The process uses a mixture of metal powders and polymer binders – also known as "feedstock" – which are then injection-moulded.

<span class="mw-page-title-main">3D printing processes</span> List of 3D printing processes

A variety of processes, equipment, and materials are used in the production of a three-dimensional object via additive manufacturing. 3D printing is also known as additive manufacturing, because the numerous available 3D printing process tend to be additive in nature, with a few key differences in the technologies and the materials used in this process.

Material extrusion-based additive manufacturing (EAM) represents one of the seven categories of 3d printing processes, defined by the ISO international standard 17296-2. While it is mostly used for plastics, under the name of FDM or FFF, it can also be used for metals and ceramics. In this AM process category, the feedstock materials are mixtures of a polymeric binder and a fine grain solid powder of metal or ceramic materials. Similar type of feedstock is also used in the Metal Injection Molding (MIM) and in the Ceramic Injection Molding (CIM) processes. The extruder pushes the material towards a heated nozzle thanks to

Rocco Lupoi is an Italian lecturer, assistant professor and researcher in mechanical and manufacturing engineering at Trinity College Dublin, Ireland. He is an expert on cold spray additive manufacturing, selective laser melting, and similar deposition methods.

Laser metal deposition (LMD) is an additive manufacturing process in which a feedstock material is melted with a laser and then deposited onto a substrate. A variety of pure metals and alloys can be used as the feedstock, as well as composite materials such as metal matrix composites. Laser sources with a wide variety of intensities, wavelengths, and optical configurations can be used. While LMD is typically a melt-based process, this is not a requirement, as discussed below. Melt-based processes typically have a strength advantage, due to achieving a full metallurgical fusion.

References

  1. 1 2 Alhart, Todd (15 December 2017). "Brothers In Arms: These Robots Put A New Twist On 3D Printing". GE Reports.
  2. 1 2 "Maschinenfabrik Berthold Hermle AG - Hermle MPA Technology – additive manufacturing, milling at its best". Maschinenfabrik Berthold Hermle AG. 4 July 2019.
  3. 1 2 Morgan, R. H. (2003). "Cold Gas Dynamic Manufacturing - A new approach to Near-Net Shape Metal Component Fabrication" (PDF). Mat. Res. Soc. Symp. Proc. 758 (Mat. Res. Soc. Symp. Proc): 73–84. Archived (PDF) from the original on July 5, 2019. Retrieved 3 July 2019.
  4. 1 2 Raoelison, R.N. (2017). "Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications". Materials and Design. 133 (133): 266–287. doi:10.1016/j.matdes.2017.07.067.
  5. Papyrin, Anatolii (2007). Cold spray technology. Elsevier. p. 336. ISBN   978-0-08-045155-8.
  6. Morgan, R. H; Sutcliffe, C. J.; Pattison, J.; Gallagher, C.; Fox, P.; O'Neill, W.; Murphy, M. (2003). "Cold Gas Dynamic Manufacturing - A new approach to Near-Net Shape Metal Component Fabrication" (PDF). Mat. Res. Soc. Symp. Proceedings. 758. Archived (PDF) from the original on July 5, 2019. Retrieved 5 July 2019.
  7. "AUS - World's Largest 3D Printer Prints 1.8 Metre Titanium Drone". foundry-planet.com - B2B Portal. 4 July 2019. Retrieved 4 July 2019.
  8. Petráčková, K.; Kondás, J.; Guagliano, M. (25 September 2017). "Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing". Journal of Thermal Spray Technology. 26 (8): 1888–1897. Bibcode:2017JTST...26.1888P. doi:10.1007/s11666-017-0643-5. S2CID   139863692.
  9. Bagherifard, Sara; Monti, Stefano; Zuccoli, Maria Vittoria; Riccio, Martina; Kondás, Ján; Guagliano, Mario (April 2018). "Cold spray deposition for additive manufacturing of freeform structural components compared to selective laser melting". Materials Science and Engineering: A. 721: 339–350. doi:10.1016/j.msea.2018.02.094. hdl:11311/1050965.
  10. Bagherifard, Sara; Roscioli, Gianluca; Zuccoli, Maria Vittoria; Hadi, Mehdi; D’Elia, Gaetano; Demir, Ali Gökhan; Previtali, Barbara; Kondás, Ján; Guagliano, Mario (23 May 2017). "Cold Spray Deposition of Freestanding Inconel Samples and Comparative Analysis with Selective Laser Melting". Journal of Thermal Spray Technology. 26 (7): 1517–1526. Bibcode:2017JTST...26.1517B. doi:10.1007/s11666-017-0572-3. hdl: 11311/1043975 . S2CID   135980887.
  11. Chen, Chaoyue; Yan, Xingchen; Xie, Yingchun; Huang, Renzhong; Kuang, Min; Ma, Wenyou; Zhao, Ruixin; Wang, Jiang; Liu, Min; Ren, Zhongming; Liao, Hanlin (January 2019). "Microstructure evolution and mechanical properties of maraging steel 300 fabricated by cold spraying". Materials Science and Engineering: A. 743: 482–493. doi:10.1016/j.msea.2018.11.116. S2CID   139357943.
  12. Yin, Shuo; Cizek, Jan; Yan, Xingchen; Lupoi, Rocco (July 2019). "Annealing strategies for enhancing mechanical properties of additively manufactured 316L stainless steel deposited by cold spray". Surface and Coatings Technology. 370: 353–361. doi:10.1016/j.surfcoat.2019.04.012. S2CID   141080399.
  13. MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B. (9 December 2016). "Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing". Journal of Thermal Spray Technology. 26 (4): 598–609. doi: 10.1007/s11666-016-0489-2 .
  14. Chen, Chaoyue; Xie, Yingchun; Yan, Xingchen; Yin, Shuo; Fukanuma, Hirotaka; Huang, Renzhong; Zhao, Ruixin; Wang, Jiang; Ren, Zhongming; Liu, Min; Liao, Hanlin (May 2019). "Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing". Additive Manufacturing. 27: 595–605. doi:10.1016/j.addma.2019.03.028. S2CID   139328329.
  15. "TWI expert delivers cold spray talk to European Space Agency". twi-global.com.
  16. Gradl, Paul R (25 July 2016). "Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles". NASA. Retrieved 4 July 2019.
  17. Bovalino, Yari M. (15 November 2017). "Secret Weapon: This Supersonic Blaster Rebuilds Jet Parts With Flying Powder". GE Reports.
  18. "Maschinenfabrik Berthold Hermle AG - Applications of Hermle generative MPA technology". Maschinenfabrik Berthold Hermle AG. 4 July 2019.
  19. "HERMLE MPA - Additive fretigen" (PDF). Technische Hochschule Ostwestfalen-Lippe. Retrieved 5 July 2019.
  20. Smith, Phillip (8 May 2019). "AUS - World's Largest 3D Printer Prints 1.8 Metre Titanium Drone". dronebelow.com. Retrieved December 19, 2022.
  21. Jahedi, Mahnaz Z.; Zahiri, Saden H.; Gulizia, Stefan; Tiganis, Bill; Tang, C.; Fraser, Darren (April 2009). "Direct Manufacturing of Titanium Parts by Cold Spray". Materials Science Forum. 618–619: 505–508. doi:10.4028/www.scientific.net/MSF.618-619.505. S2CID   137096177.
  22. Davies, Sam (29 January 2018). "Canadian researchers utilise cold spray additive manufacturing for electric motor magnets". TCT Magazine.
  23. Sova, A.; Grigoriev, S.; Okunkova, A.; Smurov, I. (2 August 2013). "Potential of cold gas dynamic spray as additive manufacturing technology". The International Journal of Advanced Manufacturing Technology. 69 (9–12): 2269–2278. doi:10.1007/s00170-013-5166-8. S2CID   109777931.
  24. "SPEE3D" . Retrieved 4 July 2019.
  25. "Titomic - Industrial Scale Additive Manufacturing, 3D Printing, Titanium, Innovative, Melbourne, Australia". www.titomic.com.
  26. "CenterLine Supersonic Spray Technology". www.supersonicspray.com.
  27. "Impact Innovations - Global technology leader for industrial cold spray". www.impact-innovations.com.
  28. "Kinetic Metallization: Coatings Once Thought Impossible". www.inovati.com.
  29. "Cold Spray System PCS-1000". www.plasma.co.jp.
  30. "VRC Metal Systems – Making Metals Work".
  31. "Powders on Demand". www.powdersondemand.com. Retrieved 2021-02-01.
  32. "BaltiCold Spray" . Retrieved 18 May 2023.