Comb space

Last updated

In mathematics, particularly topology, a comb space is a particular subspace of that resembles a comb. The comb space has properties that serve as a number of counterexamples. The topologist's sine curve has similar properties to the comb space. The deleted comb space is a variation on the comb space.

Contents

Topologist's comb Comb.svg
Topologist's comb
The intricated double comb for r=3/4. Double comb.svg
The intricated double comb for r=3/4.

Formal definition

Consider with its standard topology and let K be the set . The set C defined by:

considered as a subspace of equipped with the subspace topology is known as the comb space. The deleted comb space, D, is defined by:

.

This is the comb space with the line segment deleted.

Topological properties

The comb space and the deleted comb space have some interesting topological properties mostly related to the notion of connectedness.

1. The comb space, C, is path connected and contractible, but not locally contractible, locally path connected, or locally connected.

2. The deleted comb space, D, is connected:

Let E be the comb space without . E is also path connected and the closure of E is the comb space. As E D the closure of E, where E is connected, the deleted comb space is also connected.

3. The deleted comb space is not path connected since there is no path from (0,1) to (0,0):

Suppose there is a path from p = (0, 1) to the point (0, 0) in D. Let f : [0, 1]  D be this path. We shall prove that f 1{p} is both open and closed in [0, 1] contradicting the connectedness of this set. Clearly we have f 1{p} is closed in [0, 1] by the continuity of f. To prove that f 1{p} is open, we proceed as follows: Choose a neighbourhood V (open in R2) about p that doesn’t intersect the x–axis. Suppose x is an arbitrary point in f 1{p}. Clearly, f(x) = p. Then since f 1(V) is open, there is a basis element U containing x such that f(U) is a subset of V. We assert that f(U) = {p} which will mean that U is an open subset of f 1{p} containing x. Since x was arbitrary, f 1{p} will then be open. We know that U is connected since it is a basis element for the order topology on [0, 1]. Therefore, f(U) is connected. Suppose f(U) contains a point s other than p. Then s = (1/n, z) must belong to D. Choose r such that 1/(n + 1) < r < 1/n. Since f(U) does not intersect the x-axis, the sets A = (, r) × and B = (r, +) × will form a separation on f(U); contradicting the connectedness of f(U). Therefore, f 1{p} is both open and closed in [0, 1]. This is a contradiction.

4. The comb space is homotopic to a point but does not admit a deformation retract onto a point for every choice of basepoint.

See also

Related Research Articles

<span class="mw-page-title-main">Connected space</span> Topological space that is connected

In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space.

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.

<span class="mw-page-title-main">Boundary (topology)</span> All points not part of the interior of a subset of a topological space

In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and . Some authors use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, Metric Spaces by E. T. Copson uses the term boundary to refer to Hausdorff's border, which is defined as the intersection of a set with its boundary. Hausdorff also introduced the term residue, which is defined as the intersection of a set with the closure of the border of its complement.

In mathematics, a diffeology on a set generalizes the concept of smooth charts in a differentiable manifold, declaring what the "smooth parametrizations" in the set are.

In the mathematical field of general topology, a meagre set is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

<span class="mw-page-title-main">Quotient space (topology)</span> Topological space construction

In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map. In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.

In mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local structure. If is a local homeomorphism, is said to be an étale space over Local homeomorphisms are used in the study of sheaves. Typical examples of local homeomorphisms are covering maps.

In mathematics, the Sierpiński space is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński.

In topology, a topological space is called simply connected if it is path-connected and every path between two points can be continuously transformed into any other such path while preserving the two endpoints in question. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial.

In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology.

In general topology and related areas of mathematics, the final topology on a set with respect to a family of functions from topological spaces into is the finest topology on that makes all those functions continuous.

In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace.

<span class="mw-page-title-main">Locally connected space</span> Property of topological spaces

In topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets.

References