Compound NJ2

Last updated
Compound NJ2
NJ 2.svg
Names
IUPAC name
6,20-bis(3,4-dihydroxyphenyl)-7,10,16,19-tetrahydroxy-5,21-dioxa-13-oxoniapentacyclo[12.8.0.03,12.04,9.017,22]docosa-1,3(12),4(9),10,13,15,17(22)-heptaene-2-carboxylic acid
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/C32H24O13/c33-15-3-1-11(5-19(15)37)28-21(39)7-13-17(35)9-23-25(30(13)44-28)27(32(41)42)26-24(43-23)10-18(36)14-8-22(40)29(45-31(14)26)12-2-4-16(34)20(38)6-12/h1-6,9-10,21-22,28-29,39-40H,7-8H2,(H6-,33,34,35,36,37,38,41,42)/p+1
    Key: VVMHZAVGHYVZHM-UHFFFAOYSA-O
  • Oc6ccc(cc6O)C7Oc(c5CC7O)c4c(C(=O)O)c(c(cc1O)[o+]c4cc5O)c(c1CC2O)OC2c(cc3O)ccc3O
Properties
C32H25O13+
Molar mass 617.538 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Compound NJ2 is a xanthylium yellowish pigment found in wine.

In model solutions, colorless compounds, such as catechin, can give rise to new types of pigments. The first step is the formation of colorless dimeric compounds consisting of two flavanol units linked by carboxy-methine bridge. This is followed by the formation of xanthylium salt yellowish pigments and their ethyl esters, resulting from the dehydration of the colorless dimers, followed by an oxidation process. The loss of a water molecule takes place between two A ring hydroxyl groups of the colorless dimers. [1]

See also

Related Research Articles

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

<span class="mw-page-title-main">Verdigris</span> Green copper-based pigment

Verdigris is a common name for any of a variety of somewhat poisonous copper salts of acetic acid, which range in colour from green to a bluish-green depending on their chemical composition. Once used as a medicine and pharmaceutical preparation, verdigris occurs naturally, creating a patina on copper, bronze, and brass, and is the main component of a historic green pigment used for artistic purposes from antiquity until the late 20th century, including in easel painting, polychromatic sculptures, and illumination of maps. However, due to its instability, its popularity declined as other green pigments became readily available. The instability of its appearance stems from its hydration level and basicity, which change as the pigment interacts with other materials over time.

<span class="mw-page-title-main">Phosgene oxime</span> Chemical compound

Phosgene oxime, or CX, is an organic compound with the formula Cl2C=N−OH. It is a potent chemical weapon, specifically a nettle agent. The compound itself is a colorless solid, but impure samples are often yellowish liquids. It has a strong, disagreeable and irritating odor. It is used as a reagent in organic chemistry.

<span class="mw-page-title-main">Aluminium bromide</span> Chemical compound

Aluminium bromide is any chemical compound with the empirical formula AlBrx. Aluminium tribromide is the most common form of aluminium bromide. It is a colorless, sublimable hygroscopic solid; hence old samples tend to be hydrated, mostly as aluminium tribromide hexahydrate (AlBr3·6H2O).

<span class="mw-page-title-main">Phenyllithium</span> Chemical compound

Phenyllithium is an organometallic agent with the empirical formula C6H5Li. It is most commonly used as a metalating agent in organic syntheses and a substitute for Grignard reagents for introducing phenyl groups in organic syntheses. Crystalline phenyllithium is colorless; however, solutions of phenyllithium are various shades of brown or red depending on the solvent used and the impurities present in the solute.

Phenolic is an adjective and a substantive (noun) that may apply to :

<span class="mw-page-title-main">Han purple and Han blue</span> Artificial barium copper silicate pigments developed in ancient China during the Han dynasty

Han purple and Han blue are synthetic barium copper silicate pigments developed in China and used in ancient and imperial China from the Western Zhou period until the end of the Han dynasty.

<span class="mw-page-title-main">Syringaldehyde</span> Chemical compound

Syringaldehyde is an organic compound that occurs in trace amounts widely in nature. Some species of insects use syringaldehyde in their chemical communication systems. Scolytus multistriatus uses it as a signal to find a host tree during oviposition.

<span class="mw-page-title-main">L-selectride</span> Chemical compound

L-selectride is a organoboron compound with the chemical formula Li[(CH3CH2CH )3BH]. A colorless salt, it is usually dispensed as a solution in THF. As a particularly basic and bulky borohydride, it is used for stereoselective reduction of ketones.

<span class="mw-page-title-main">Phenolic content in wine</span> Wine chemistry

Phenolic compounds—natural phenol and polyphenols—occur naturally in wine. These include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

<span class="mw-page-title-main">Glass coloring and color marking</span> Production methods

Glass coloring and color marking may be obtained in several ways.

  1. by the addition of coloring ions,
  2. by precipitation of nanometer-sized colloids,
    Ancient Roman enamelled glass, 1st century, Begram Hoard
  3. by colored inclusions
  4. by light scattering
  5. by dichroic coatings, or
  6. by colored coatings
<span class="mw-page-title-main">Wine color</span> Wine characteristic

The color of wine is one of the most easily recognizable characteristics of wines. Color is also an element in wine tasting since heavy wines generally have a deeper color. The accessory traditionally used to judge the wine color was the tastevin, a shallow cup allowing one to see the color of the liquid in the dim light of a cellar. The color is an element in the classification of wines.

<span class="mw-page-title-main">Diethylaluminium chloride</span> Chemical compound

Diethylaluminium chloride, abbreviated DEAC, is an organoaluminium compound. Although often given the chemical formula (C2H5)2AlCl, it exists as a dimer, [(C2H5)2AlCl]2 It is a precursor to Ziegler-Natta catalysts employed for the production of polyolefins. The compound is also a Lewis acid, useful in organic synthesis. The compound is a colorless waxy solid, but is usually handled as a solution in hydrocarbon solvents. It is highly reactive, even pyrophoric.

<span class="mw-page-title-main">Triisobutylaluminium</span> Chemical compound

Triisobutylaluminium (TiBA) is an organoaluminium compound with the formula Al(CH2CH(CH3)2)3. This colorless pyrophoric liquid is mainly used to make linear primary alcohols and α-olefins.

<span class="mw-page-title-main">Castavinol</span>

Castavinols are natural phenolic compounds found in red wines. These molecules are colorless and are derived from anthocyanin pigments. Thus their formation leads to a wine color loss.

<span class="mw-page-title-main">Perchloromethyl mercaptan</span> Chemical compound

Perchloromethyl mercaptan is the organosulfur compound with the formula CCl3SCl. It is mainly used as an intermediate for the synthesis of dyes and fungicides (captan, folpet). It is a colorless oil, although commercial samples are yellowish. It is insoluble in water but soluble in organic solvents. It has a foul, unbearable, acrid odor. Perchloromethyl mercaptan is the original name. The systematic name is trichloromethanesulfenyl chloride, because the compound is a sulfenyl chloride, not a mercaptan.

<span class="mw-page-title-main">Malvidin glucoside-ethyl-catechin</span> Chemical compound

Malvidin glucoside-ethyl-catechin is a flavanol-anthocyanin adduct. Flavanol-anthocyanin adducts are formed during wine ageing through reactions between anthocyanins and tannins present in grape, with yeast metabolites such as acetaldehyde. Acetaldehyde-induced reactions yield ethyl-linked species such as malvidin glucoside-ethyl-catechin.

<span class="mw-page-title-main">Flavanol-anthocyanin adduct</span>

Flavanol-anthocyanin adducts are formed during wine ageing through reactions between anthocyanins and tannins present in grape, with yeast metabolites such as acetaldehyde. Acetaldehyde-induced reactions yield ethyl-linked species such as malvidin glucoside-ethyl-catechin.

<span class="mw-page-title-main">Oxovitisin</span>

Oxovitisins are a type of pyranoanthocyanin with a pyranone (2-pyrone) component found in aged Port wines. They do not contain an oxonium ion component, as anthocyanins do. Therefore, they do not have an absorption maximum at 520 nm. Oxovitisins are stable yellowish pigments with similar unique spectral features, displaying only a pronounced broad band around 370 nm in the UV−vis spectrum.

<span class="mw-page-title-main">Aluminium compounds</span>

Aluminium (British and IUPAC spellings) or aluminum (North American spelling) combines characteristics of pre- and post-transition metals. Since it has few available electrons for metallic bonding, like its heavier group 13 congeners, it has the characteristic physical properties of a post-transition metal, with longer-than-expected interatomic distances. Furthermore, as Al3+ is a small and highly charged cation, it is strongly polarizing and aluminium compounds tend towards covalency; this behaviour is similar to that of beryllium (Be2+), an example of a diagonal relationship. However, unlike all other post-transition metals, the underlying core under aluminium's valence shell is that of the preceding noble gas, whereas for gallium and indium it is that of the preceding noble gas plus a filled d-subshell, and for thallium and nihonium it is that of the preceding noble gas plus filled d- and f-subshells. Hence, aluminium does not suffer the effects of incomplete shielding of valence electrons by inner electrons from the nucleus that its heavier congeners do. Aluminium's electropositive behavior, high affinity for oxygen, and highly negative standard electrode potential are all more similar to those of scandium, yttrium, lanthanum, and actinium, which have ds2 configurations of three valence electrons outside a noble gas core: aluminium is the most electropositive metal in its group. Aluminium also bears minor similarities to the metalloid boron in the same group; AlX3 compounds are valence isoelectronic to BX3 compounds (they have the same valence electronic structure), and both behave as Lewis acids and readily form adducts. Additionally, one of the main motifs of boron chemistry is regular icosahedral structures, and aluminium forms an important part of many icosahedral quasicrystal alloys, including the Al–Zn–Mg class.

References

  1. Es-Safi, Nour-Eddine; Le Guernevé, Christine; Fulcrand, Hélène; Cheynier, Véronique; Moutounet, Michel (2000). "Xanthylium salts formation involved in wine colour changes". International Journal of Food Science & Technology. 35: 63–74. doi:10.1046/j.1365-2621.2000.00339.x.