Compound of four hexagonal prisms

Last updated
Compound of four hexagonal prisms
UC38-4 hexagonal prisms.png
Type Uniform compound
IndexUC38
Polyhedra4 hexagonal prisms
Faces8 hexagons,
24 squares
Edges72
Vertices48
Symmetry group octahedral (Oh)
Subgroup restricting to one constituent3-fold antiprismatic (D3d)

This uniform polyhedron compound is a symmetric arrangement of 4 hexagonal prisms, aligned with the axes of threefold rotational symmetry of an octahedron.

Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the permutations of

(±1, ±(1−6), ±(1+6))

Related Research Articles

<span class="mw-page-title-main">Icosidodecahedron</span> Archimedean solid with 32 faces

In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (icosi-) triangular faces and twelve (dodeca-) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such, it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

20 (twenty) is the natural number following 19 and preceding 21.

In chemistry, a mixture is a material made up of two or more different chemical substances which can be separated by physical method. It's an impure substance made up of 2 or more elements or compounds mechanically mixed together in any proportion. A mixture is the physical combination of two or more substances in which the identities are retained and are mixed in the form of solutions, suspensions or colloids.

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular and equilateral. Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism or trigonal prism is a prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a right triangular prism. A right triangular prism may be both semiregular and uniform.

<span class="mw-page-title-main">Great dodecahedron</span> Kepler-Poinsot polyhedron

In geometry, the great dodecahedron is one of four Kepler–Poinsot polyhedra. It is composed of 12 pentagonal faces, intersecting each other making a pentagrammic path, with five pentagons meeting at each vertex.

<span class="mw-page-title-main">Alternation (geometry)</span> Removal of alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

<span class="mw-page-title-main">Compound of five cubes</span> Polyhedral compound

The compound of five cubes is one of the five regular polyhedral compounds. It was first described by Edmund Hess in 1876.

In geometry, a uniform polyhedron compound is a polyhedral compound whose constituents are identical uniform polyhedra, in an arrangement that is also uniform, i.e. the symmetry group of the compound acts transitively on the compound's vertices.

In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(1/5), or approximately 78.46°.

<span class="mw-page-title-main">Chemical substance</span> Form of matter

A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture. If a mixture is separated to isolate one chemical substance to a desired degree, the resulting substance is said to be chemically pure.

<span class="mw-page-title-main">Compound of six cubes with rotational freedom</span> Polyhedral compound

This uniform polyhedron compound is a symmetric arrangement of 6 cubes, considered as square prisms. It can be constructed by superimposing six identical cubes, and then rotating them in pairs about the three axes that pass through the centres of two opposite cubic faces. Each cube is rotated by an equal angle θ.

The Gmelin database is a large database of organometallic and inorganic compounds updated quarterly. It is based on the German publication Gmelins Handbuch der anorganischen Chemie which was originally published by Leopold Gmelin in 1817; the last print edition, the 8th, appeared in the 1990s. Although published over many decades, the printed series was not uniform in coverage or currency. Some elements are represented only by decades-old and not updated slim summary volumes. Others have numerous supplements. Most later supplement volumes focused on an element's organic complexes. Each volume lists its literature coverage date.

<span class="mw-page-title-main">Dodecagram</span> Star polygon with 12 vertices

In geometry, a dodecagram is a star polygon or compound with 12 vertices. There is one regular dodecagram polygon. There are also 4 regular compounds {12/2},{12/3},{12/4}, and {12/6}.

References