Compound of two great icosahedra

Last updated
Compound of two great icosahedra
UC52-2 great icosahedra.png
Type Uniform compound
IndexUC52
Polyhedra2 great icosahedra
Faces16+24 triangles
Edges60
Vertices24
Symmetry group octahedral (Oh)
Subgroup restricting to one constituent pyritohedral (Th)
3D model of a compound of two great icosahedra Compound of two great icosahedra.stl
3D model of a compound of two great icosahedra

In geometry, the compound of two great icosahedra is a uniform polyhedron compound. It's composed of 2 great icosahedra, in the same arrangement as in the compound of 2 icosahedra.

The triangles in this compound decompose into two orbits under action of the symmetry group: 16 of the triangles lie in coplanar pairs in octahedral planes, while the other 24 lie in unique planes.

The great icosahedron, as a uniform retrosnub tetrahedron Retrosnub tetrahedron.png , is similar to these snub-pair compounds: compound of two icosahedra, compound of two snub cubes and compound of two snub dodecahedra.

Related Research Articles

<span class="mw-page-title-main">Regular icosahedron</span> Convex polyhedron with 20 triangular faces

In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, a polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from the Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

<span class="mw-page-title-main">600-cell</span> Four-dimensional analog of the icosahedron

In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,5}. It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from "tetrahedral complex") and a polytetrahedron, being bounded by tetrahedral cells.

<span class="mw-page-title-main">120-cell</span> Four-dimensional analog of the dodecahedron

In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid.

<span class="mw-page-title-main">Runcinated tesseracts</span>

In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism or trigonal prism is a prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a right triangular prism. A right triangular prism may be both semiregular and uniform.

<span class="mw-page-title-main">Snub square tiling</span>

In geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol is s{4,4}.

<span class="mw-page-title-main">Great dirhombicosidodecahedron</span> Uniform star polyhedron with 124 faces

In geometry, the great dirhombicosidodecahedron (or great snub disicosidisdodecahedron) is a nonconvex uniform polyhedron, indexed last as U75. It has 124 faces (40 triangles, 60 squares, and 24 pentagrams), 240 edges, and 60 vertices.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Snub 24-cell</span>

In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular faces, 432 edges, and 96 vertices. One can build it from the 600-cell by diminishing a select subset of icosahedral pyramids and leaving only their icosahedral bases, thereby removing 480 tetrahedra and replacing them with 24 icosahedra.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Compound of two icosahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 2 icosahedra. It has octahedral symmetry Oh. As a holosnub, it is represented by Schläfli symbol β{3,4} and Coxeter diagram .

<span class="mw-page-title-main">Compound of five great icosahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of 5 great icosahedra, in the same arrangement as in the compound of 5 icosahedra.

<span class="mw-page-title-main">Compound of five icosahedra</span> Polyhedral compound

The compound of five icosahedra is uniform polyhedron compound. It's composed of 5 icosahedra, rotated around a common axis. It has icosahedral symmetry Ih.

<span class="mw-page-title-main">Compound of two snub cubes</span> Polyhedral compound

This uniform polyhedron compound is a composition of the 2 enantiomers of the snub cube. As a holosnub, it is represented by Schläfli symbol βr{4,3} and Coxeter diagram .

<span class="mw-page-title-main">Compound of two snub dodecahedra</span> Polyhedral compound

This uniform polyhedron compound is a composition of the 2 enantiomers of the snub dodecahedron.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

References