Concentration polarization

Last updated

Concentration polarization is a term used in the scientific fields of electrochemistry and membrane science.

Contents

In electrochemistry

In electrochemistry, concentration polarization denotes the part of the polarization of an electrolytic cell resulting from changes in the electrolyte concentration due to the passage of current through the electrode/solution interface. [1] Here polarization is understood as the shift of the electrochemical potential difference across the cell from its equilibrium value. When the term is used in this sense, it is equivalent to “concentration overpotential”. [2] [3] the changes in concentration (emergence of concentration gradients in the solution adjacent to the electrode surface) is the difference in the rate of electrochemical reaction at the electrode and the rate of ion migration in the solution from/to the surface. When a chemical species participating in an electrochemical electrode reaction is in short supply, the concentration of this species at the surface decreases causing diffusion, which is added to the migration transport towards the surface in order to maintain the balance of consumption and delivery of that species.

Fig. 1. Fluxes and concentration profiles in a membrane and the surrounding solutions. In Fig. a, a driving force is applied to a system initially at equilibrium: the flux of a selectively permeating species in the membrane,
J
1
m
{\displaystyle J_{1}^{m}}
, is higher than its flux in solution,
J
1
s
{\displaystyle J_{1}^{s}}
. Higher flux in the membrane causes decreasing concentration at the upstream membrane/solution interface, and increasing concentration at the downstream interface (b). Concentration gradients gives rise to diffusion transport, which increases the total flux in solution and decreases the flux in the membrane. In steady state,
J
1
s
=
J
1
m
{\displaystyle J_{1}^{s}=J_{1}^{m}}
. Fig1 Concentration polarization.jpg
Fig. 1. Fluxes and concentration profiles in a membrane and the surrounding solutions. In Fig. a, a driving force is applied to a system initially at equilibrium: the flux of a selectively permeating species in the membrane, , is higher than its flux in solution, . Higher flux in the membrane causes decreasing concentration at the upstream membrane/solution interface, and increasing concentration at the downstream interface (b). Concentration gradients gives rise to diffusion transport, which increases the total flux in solution and decreases the flux in the membrane. In steady state, .

In membrane science and technology

In membrane science and technology, concentration polarization refers to the emergence of concentration gradients at a membrane/solution interface resulted from selective transfer of some species through the membrane under the effect of transmembrane driving forces. [4] Generally, the cause of concentration polarization is the ability of a membrane to transport some species more readily than the other(s) (which is the membrane permselectivity): the retained species are concentrated at the upstream membrane surface while the concentration of transported species decreases. Thus, concentration polarization phenomenon is inherent to all types of membrane separation processes. In the cases of gas separations, pervaporation, membrane distillation, reverse osmosis, nanofiltration, ultrafiltration, and microfiltration separations, the concentration profile has a higher level of solute nearest to the upstream membrane surface compared with the more or less well mixed bulk fluid far from the membrane surface. In the case of dialysis and electrodialysis, the concentrations of selectively transported dissolved species are reduced at the upstream membrane surface compared to the bulk solution. The emergence of concentration gradients is illustrated in Figs. 1a and 1b. Fig. 1a shows the concentration profile near and within a membrane when an external driving force is just applied to an initially equilibrium system. Concentration gradients have not yet formed. If the membrane is selectively permeable to species 1, its flux () within the membrane is higher than that in the solution (). Higher flux in the membrane causes a decrease in the concentration at the upstream membrane surface () and an increase at the downstream surface (), Fig. 1b. Thus, the upstream solution becomes depleted and the downstream solution becomes enriched in regard to species 1. The concentration gradients cause additional diffusion fluxes, which contribute to an increase of the total flux in the solutions and to a decrease of the flux in the membrane. As a result, the system reaches a steady state where . The greater the external force applied, the lower . In electrodialysis, when becomes much lower than the bulk concentration, the resistance of the depleted solution becomes quite elevated. The current density related to this state is known as the limiting current density. [5]

Concentration polarization strongly affects the performance of the separation process. First, concentration changes in the solution reduce the driving force within the membrane, hence, the useful flux/rate of separation. In the case of pressure driven processes, this phenomenon causes an increase of the osmotic pressure gradient in the membrane, which reduces the net driving pressure gradient. In the case of dialysis, the driving concentration gradient in the membrane is reduced. [6] In the case of electromembrane processes, the potential drop in the diffusion boundary layers reduces the gradient of electric potential in the membrane. Lower rate of separation under the same external driving force means increased power consumption.

Moreover, concentration polarization leads to:

Thus, the selectivity of separation and the membrane lifetime are deteriorated.

Generally, to reduce the concentration polarization, increased flow rates of the solutions between the membranes as well as spacers promoting turbulence are applied [5, 6]. This technique results in better mixing of the solution and in reducing the thickness of the diffusion boundary layer, which is defined as the region in the vicinity of an electrode or a membrane where the concentrations are different from their value in the bulk solution. [7] In electrodialysis, additional mixing of the solution may be obtained by applying an elevated voltage where current-induced convection occurs as gravitational convection or electroconvection. Electroconvection is defined [8] as current-induced volume transport when an electric field is imposed through the charged solution. Several mechanisms of electroconvection are discussed. [9] [10] [11] [12] In dilute solutions, electroconvection allows increasing current density several times higher than the limiting current density. [11] Electroconvection refers to electrokinetic phenomena, which are important in microfluidic devices. Thus, there is a bridge between membrane science and micro/nanofluidics. [13] Fruitful ideas are transferred from microfluidics: novel conceptions of electro-membrane devices for water desalination in overlimiting current range have been proposed. [14] [15]

Related Research Articles

In electrochemistry, the Nernst equation is an equation that relates the reduction potential of an electrochemical reaction to the standard electrode potential, temperature, and activities of the chemical species undergoing reduction and oxidation. It was named after Walther Nernst, a German physical chemist who formulated the equation.

In electrochemistry, the electrochemical potential (ECP), μ, is a thermodynamic measure of chemical potential that does not omit the energy contribution of electrostatics. Electrochemical potential is expressed in the unit of J/mol.

Galvanic cell device for spontaneous conversion of chemical into electrical energy

A galvanic cell or voltaic cell, named after Luigi Galvani or Alessandro Volta, respectively, is an electrochemical cell that derives electrical energy from spontaneous redox reactions taking place within the cell. It generally consists of two different metals immersed in electrolytes, or of individual half-cells with different metals and their ions in solution connected by a salt bridge or separated by a porous membrane.

Dialysis (biochemistry) Process of separating molecules

In biochemistry, dialysis is the process of separating molecules in solution by the difference in their rates of diffusion through a semipermeable membrane, such as dialysis tubing.

The standard hydrogen electrode, is a redox electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials. Its absolute electrode potential is estimated to be 4.44 ± 0.02 V at 25 °C, but to form a basis for comparison with all other electrode reactions, hydrogen's standard electrode potential (E0) is declared to be zero volts at any temperature. Potentials of any other electrodes are compared with that of the standard hydrogen electrode at the same temperature.

Cyclic voltammetry

Cyclic voltammetry (CV) is a type of potentiodynamic electrochemical measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is reached in a CV experiment, the working electrode's potential is ramped in the opposite direction to return to the initial potential. These cycles of ramps in potential may be repeated as many times as needed. The current at the working electrode is plotted versus the applied voltage to give the cyclic voltammogram trace. Cyclic voltammetry is generally used to study the electrochemical properties of an analyte in solution or of a molecule that is adsorbed onto the electrode.

Polarography is a type of voltammetry where the working electrode is a dropping mercury electrode (DME) or a static mercury drop electrode (SMDE), which are useful for their wide cathodic ranges and renewable surfaces. It was invented in 1922 by Czech chemist Jaroslav Heyrovský, for which he won the Nobel prize in 1959.

Electrodialysis

Electrodialysis (ED) is used to transport salt ions from one solution through ion-exchange membranes to another solution under the influence of an applied electric potential difference. This is done in a configuration called an electrodialysis cell. The cell consists of a feed (dilute) compartment and a concentrate (brine) compartment formed by an anion exchange membrane and a cation exchange membrane placed between two electrodes. In almost all practical electrodialysis processes, multiple electrodialysis cells are arranged into a configuration called an electrodialysis stack, with alternating anion and cation exchange membranes forming the multiple electrodialysis cells. Electrodialysis processes are different from distillation techniques and other membrane based processes in that dissolved species are moved away from the feed stream rather than the reverse. Because the quantity of dissolved species in the feed stream is far less than that of the fluid, electrodialysis offers the practical advantage of much higher feed recovery in many applications.

In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly related to a cell's voltage efficiency. In an electrolytic cell the existence of overpotential implies the cell requires more energy than thermodynamically expected to drive a reaction. In a galvanic cell the existence of overpotential means less energy is recovered than thermodynamics predicts. In each case the extra/missing energy is lost as heat. The quantity of overpotential is specific to each cell design and varies across cells and operational conditions, even for the same reaction. Overpotential is experimentally determined by measuring the potential at which a given current density is achieved.

A streaming current and streaming potential are two interrelated electrokinetic phenomena studied in the areas of surface chemistry and electrochemistry. They are an electric current or potential which originates when an electrolyte is driven by a pressure gradient through a channel or porous plug with charged walls.

Double layer (surface science) a structure that appears on the surface of an object when it is exposed to a fluid

A double layer is a structure that appears on the surface of an object when it is exposed to a fluid. The object might be a solid particle, a gas bubble, a liquid droplet, or a porous body. The DL refers to two parallel layers of charge surrounding the object. The first layer, the surface charge, consists of ions adsorbed onto the object due to chemical interactions. The second layer is composed of ions attracted to the surface charge via the Coulomb force, electrically screening the first layer. This second layer is loosely associated with the object. It is made of free ions that move in the fluid under the influence of electric attraction and thermal motion rather than being firmly anchored. It is thus called the "diffuse layer".

In electrochemistry, exchange current density is a parameter used in the Tafel equation, Butler–Volmer equation and other electrochemical kinetics expressions. The Tafel equation describes the dependence of current for an electrolytic process to overpotential.

Nanofluidic circuitry is a nanotechnology aiming for control of fluids in nanometer scale. Due to the effect of an electrical double layer within the fluid channel, the behavior of nanofluid is observed to be significantly different compared with its microfluidic counterparts. Its typical characteristic dimensions fall within the range of 1–100 nm. At least one dimension of the structure is in nanoscopic scale. Phenomena of fluids in nano-scale structure are discovered to be of different properties in electrochemistry and fluid dynamics.

Electrodeionization (EDI) is a water treatment technology that utilizes electricity, ion exchange membranes and resin to deionize water and separate dissolved ions (impurities) from water. It differs from other water purification technologies in that it is done without the use of chemical treatments and is usually a polishing treatment to reverse osmosis (RO). There are also EDI units that are often referred to as continuous electrodeionization (CEDI) since the electric current regenerates the resin mass continuously. CEDI technique can achieve very high purity, with conductivity below 0.1 μS/cm.

In cyclic voltammetry, the Randles–Sevcik equation describes the effect of scan rate on the peak current ip. For simple redox events such as the ferrocene/ferrocenium couple, ip depends not only on the concentration and diffusional properties of the electroactive species but also on scan rate.

Membrane technology covers all engineering approaches for the transport of substances between two fractions with the help of permeable membranes. In general, mechanical separation processes for separating gaseous or liquid streams use membrane technology.

Scanning electrochemical microscopy (SECM) is a technique within the broader class of scanning probe microscopy (SPM) that is used to measure the local electrochemical behavior of liquid/solid, liquid/gas and liquid/liquid interfaces. Initial characterization of the technique was credited to University of Texas electrochemist, Allen J. Bard, in 1989. Since then, the theoretical underpinnings have matured to allow widespread use of the technique in chemistry, biology and materials science. Spatially resolved electrochemical signals can be acquired by measuring the current at an ultramicroelectrode (UME) tip as a function of precise tip position over a substrate region of interest. Interpretation of the SECM signal is based on the concept of diffusion-limited current. Two-dimensional raster scan information can be compiled to generate images of surface reactivity and chemical kinetics.

An ion-exchange membrane is a semi-permeable membrane that transports certain dissolved ions, while blocking other ions or neutral molecules.

In electrochemistry, protein film voltammetry is a technique for examining the behavior of proteins immobilized on an electrode. The technique is applicable to proteins and enzymes that engage in electron transfer reactions and it is part of the methods available to study enzyme kinetics.

Sonoelectrochemistry is the application of ultrasound in electrochemistry. Like sonochemistry, sonoelectrochemistry was discovered in the early 20th century. The effects of power ultrasound on electrochemical systems and important electrochemical parameters were originally demonstrated by Moriguchi and then by Schmid and Ehert when the researchers investigated the influence of ultrasound on concentration polarisation, metal passivation and the production of electrolytic gases in aqueous solutions. In the late 1950s, Kolb and Nyborg showed that the electrochemical solution hydrodynamics in an electrochemical cell was greatly increased in the presence of ultrasound and described this phenomenon as acoustic streaming. In 1959, Penn et al. demonstrated that sonication had a great effect on the electrode surface activity and electroanalyte species concentration profile throughout the solution. In the early 1960s, the electrochemist Allen J. Bard showed in controlled potential coulometry experiments that ultrasound significantly enhances mass transport of electrochemical species from the bulk solution to the electroactive surface. In the range of ultrasonic frequencies [20 kHz – 2 MHz], ultrasound has been applied to many electrochemical systems, processes and areas of electrochemistry both in academia and industry, as this technology offers several benefits over traditional technologies.The advantages are as follows: significant thinning of the diffusion layer thickness (δ) at the electrode surface; increase in electrodeposit/electroplating thickness; increase in electrochemical rates, yields and efficiencies; increase in electrodeposit porosity and hardness; increase in gas removal from electrochemical solutions; increase in electrode cleanliness and hence electrode surface activation; lowerering in electrode overpotentials ; and suppression in electrode fouling.

References

  1. S.P. Parker, McGraw-Hill Dictionary of Scientific & Technical Terms 6E, 2003.
  2. A.J. Bard, G.R. Inzelt, F. Scholz (Eds.), Electrochemical Dictionary, Springer, Berlin, 2012.
  3. J. Manzanares, K. Kontturi, In: Bard A.J., Stratmann M., Calvo E.J., editors. In Encyclopedia of Electrochemistry, Interfacial Kineticsand Mass Transport, VCH-Wiley, Weinheim; 2003.
  4. E.M.V. Hoek, M. Guiver, V. Nikonenko, V.V. Tarabara, A.L. Zydney, Membrane Terminology, in: E.M.V. Hoek, V.V. Tarabara (Eds.), Encyclopedia of Membrane Science and Technology, Wiley, Hoboken, NJ, 2013, Vol. 3, pp. 2219–2228.
  5. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, 2004 p. 166
  6. R.W. Baker, Membrane Technology and Applications, John Wiley & Sons, 2012.
  7. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006) " diffusion layer (concentration boundary layer) ". doi : 10.1351/goldbook.D01725
  8. R.F. Probstein, Physicochemical Hydrodynamics, Wiley, NY, 1994.
  9. I. Rubinstein, B. Zaltzman, Electro-osmotically induced convection at a permselective membrane, Physical Review E 62 (2000) 2238.
  10. N.A. Mishchuk, Concentration polarization of interface and non-linear electrokinetic phenomena, Advances in Colloid and Interface Science 160 (2010) 16.
  11. 1 2 V.V. Nikonenko, N.D. Pismenskaya, E.I. Belova, P. Sistat, P. Huguet, G. Pourcelly, C. Larchet, Intensive current transfer in membrane systems: modeling, mechanisms and application in electrodialysis, Advances in Colloid and Interface Science 160 (2010) 101.
  12. Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications, Elsevier, Amsterdam, 2007.
  13. J. De Jong, R.G.H. Lammertink, M. Wessling, Membranes and microfluidics: a review, Lab on a Chip—Miniaturisation for Chemistry and Biology 6 (9) (2006) 1125.
  14. S.-J. Kim, S.-H. Ko, K.H. Kang, J. Han, Direct seawater desalination by ion concentration polarization, Nature Nanotechnology 5 (2010) 297.
  15. M.Z. Bazant, E.V. Dydek, D. Deng, A. Mani, Method and apparatus for desalination and purification, US Patent 2011/0308953 A1.