Congruence (manifolds)

Last updated

In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold.

Contents

Congruences are an important concept in general relativity, and are also important in parts of Riemannian geometry.

A motivational example

The idea of a congruence is probably better explained by giving an example than by a definition. Consider the smooth manifold R². Vector fields can be specified as first order linear partial differential operators, such as

These correspond to a system of first order linear ordinary differential equations, in this case

where dot denotes a derivative with respect to some (dummy) parameter. The solutions of such systems are families of parameterized curves, in this case

This family is what is often called a congruence of curves, or just congruence for short.

This particular example happens to have two singularities, where the vector field vanishes. These are fixed points of the flow. (A flow is a one-dimensional group of diffeomorphisms; a flow defines an action by the one-dimensional Lie group R, having locally nice geometric properties.) These two singularities correspond to two points, rather than two curves. In this example, the other integral curves are all simple closed curves. Many flows are considerably more complicated than this. To avoid complications arising from the presence of singularities, usually one requires the vector field to be nonvanishing.

If we add more mathematical structure, our congruence may acquire new significance.

Congruences in Riemannian manifolds

For example, if we make our smooth manifold into a Riemannian manifold by adding a Riemannian metric tensor, say the one defined by the line element

our congruence might become a geodesic congruence. Indeed, in the example from the preceding section, our curves become geodesics on an ordinary round sphere (with the North pole excised). If we had added the standard Euclidean metric instead, our curves would have become circles, but not geodesics.

An interesting example of a Riemannian geodesic congruence, related to our first example, is the Clifford congruence on P³, which is also known at the Hopf bundle or Hopf fibration. The integral curves or fibers respectively are certain pairwise linked great circles, the orbits in the space of unit norm quaternions under left multiplication by a given unit quaternion of unit norm.

Congruences in Lorentzian manifolds

In a Lorentzian manifold, such as a spacetime model in general relativity (which will usually be an exact or approximate solution to the Einstein field equation), congruences are called timelike, null, or spacelike if the tangent vectors are everywhere timelike, null, or spacelike respectively. A congruence is called a geodesic congruence if the tangent vector field has vanishing covariant derivative, .

See also

Related Research Articles

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In mathematical physics, Minkowski space is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

<span class="mw-page-title-main">Pseudo-Riemannian manifold</span> Differentiable manifold with nondegenerate metric tensor

In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

<span class="mw-page-title-main">Penrose–Hawking singularity theorems</span> Key results in general relativity on gravitational singularities

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

In relativistic physics, the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame. The phenomena in this hyperbolically accelerated frame can be compared to effects arising in a homogeneous gravitational field. For general overview of accelerations in flat spacetime, see Acceleration and Proper reference frame.

pp-wave spacetime

In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt.

<span class="mw-page-title-main">Mathematics of general relativity</span> Mathematical structures and techniques used in the theory of general relativity

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In general relativity, the monochromatic electromagnetic plane wave spacetime is the analog of the monochromatic plane waves known from Maxwell's theory. The precise definition of the solution is quite complicated but very instructive.

<span class="mw-page-title-main">Gödel metric</span> Solution of Einstein field equations

The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution of the Einstein field equations in which the stress–energy tensor contains two terms, the first representing the matter density of a homogeneous distribution of swirling dust particles, and the second associated with a negative cosmological constant.

In general relativity, the metric tensor is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational potential of Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

In the mathematical field of Lorentzian geometry, a Cauchy surface is a certain kind of submanifold of a Lorentzian manifold. In the application of Lorentzian geometry to the physics of general relativity, a Cauchy surface is usually interpreted as defining an "instant of time"; in the mathematics of general relativity, Cauchy surfaces are important in the formulation of the Einstein equations as an evolutionary problem.

In general relativity, a congruence is the set of integral curves of a vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation.

In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter.

<span class="mw-page-title-main">Born coordinates</span> Coordinates to capture characteristics of rotating frames of reference

In relativistic physics, the Born coordinate chart is a coordinate chart for Minkowski spacetime, the flat spacetime of special relativity. It is often used to analyze the physical experience of observers who ride on a ring or disk rigidly rotating at relativistic speeds, so called Langevin observers. This chart is often attributed to Max Born, due to his 1909 work on the relativistic physics of a rotating body. For overview of the application of accelerations in flat spacetime, see Acceleration and proper reference frame.

In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.

In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented.

References