Conjugate points

Last updated

In differential geometry, conjugate points or focal points [1] [2] are, roughly, points that can almost be joined by a 1-parameter family of geodesics. For example, on a sphere, the north-pole and south-pole are connected by any meridian. Another viewpoint is that conjugate points tell when the geodesics fail to be length-minimizing. All geodesics are locally length-minimizing, but not globally. For example on a sphere, any geodesic passing through the north-pole can be extended to reach the south-pole, and hence any geodesic segment connecting the poles is not (uniquely) globally length minimizing. This tells us that any pair of antipodal points on the standard 2-sphere are conjugate points. [3]

Contents

Definition

Suppose p and q are points on a pseudo-Riemannian manifold, and is a geodesic that connects p and q. Then p and q are conjugate points along if there exists a non-zero Jacobi field along that vanishes at p and q.

Recall that any Jacobi field can be written as the derivative of a geodesic variation (see the article on Jacobi fields). Therefore, if p and q are conjugate along , one can construct a family of geodesics that start at p and almost end at q. In particular, if is the family of geodesics whose derivative in s at generates the Jacobi field J, then the end point of the variation, namely , is the point q only up to first order in s. Therefore, if two points are conjugate, it is not necessary that there exist two distinct geodesics joining them.

For Riemannian geometries, beyond a conjugate point, the geodesic is no longer locally the shortest path between points, as there are nearby paths that are shorter. This is analogous to the Earth's surface, where the geodesic between two points along a great circle is the shortest route only up to the antipodal point; beyond that, there are shorter paths.

Beyond a conjugate point, a geodesic in Lorentzian geometry may not be maximizing proper time (for timelike geodesics), and the geodesic may enter a region where it is no longer unique or well-defined. For null geodesics, points beyond the conjugate point are now timelike separated.

Up to the first conjugate point, a geodesic between two points is unique. Beyond this, there can be multiple geodesics connecting two points.

Suppose we have a Lorentzian manifold with a geodesic congruence. Then, at a conjugate point, the expansion parameter θ in Raychaudhuri's equation becomes negative infinite in a finite amount of proper time, indicating that the geodesics are focusing to a point. This is because the cross-sectional area of the congruence becomes zero, and hence the rate of change of this area (which is what θ represents) diverges negatively.

Examples

See also

Related Research Articles

<span class="mw-page-title-main">Great circle</span> Spherical geometry analog of a straight line

In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.

<span class="mw-page-title-main">Geodesic</span> Straight path on a curved surface or a Riemannian manifold

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a (possibly asymmetric) Minkowski normF(x, −) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ : [a, b] → M as

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

<span class="mw-page-title-main">Affine connection</span> Construct allowing differentiation of tangent vector fields of manifolds

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.

Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces.

In Riemannian geometry, a Jacobi field is a vector field along a geodesic in a Riemannian manifold describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after Carl Jacobi.

In mathematics, a sub-Riemannian manifold is a certain type of generalization of a Riemannian manifold. Roughly speaking, to measure distances in a sub-Riemannian manifold, you are allowed to go only along curves tangent to so-called horizontal subspaces.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In general relativity, a congruence is the set of integral curves of a vector field in a four-dimensional Lorentzian manifold which is interpreted physically as a model of spacetime. Often this manifold will be taken to be an exact or approximate solution to the Einstein field equation.

In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold.

In mathematics, the Cartan–Hadamard theorem is a statement in Riemannian geometry concerning the structure of complete Riemannian manifolds of non-positive sectional curvature. The theorem states that the universal cover of such a manifold is diffeomorphic to a Euclidean space via the exponential map at any point. It was first proved by Hans Carl Friedrich von Mangoldt for surfaces in 1881, and independently by Jacques Hadamard in 1898. Élie Cartan generalized the theorem to Riemannian manifolds in 1928. The theorem was further generalized to a wide class of metric spaces by Mikhail Gromov in 1987; detailed proofs were published by Ballmann (1990) for metric spaces of non-positive curvature and by Alexander & Bishop (1990) for general locally convex metric spaces.

In mathematics — specifically, in Riemannian geometry — geodesic convexity is a natural generalization of convexity for sets and functions to Riemannian manifolds. It is common to drop the prefix "geodesic" and refer simply to "convexity" of a set or function.

In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.

In Riemannian geometry, the cut locus of a point in a manifold is roughly the set of all other points for which there are multiple minimizing geodesics connecting them from , but it may contain additional points where the minimizing geodesic is unique, under certain circumstances. The distance function from p is a smooth function except at the point p itself and the cut locus.

<span class="mw-page-title-main">Differential geometry of surfaces</span> The mathematics of smooth surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

In Riemannian geometry, the Rauch comparison theorem, named after Harry Rauch, who proved it in 1951, is a fundamental result which relates the sectional curvature of a Riemannian manifold to the rate at which geodesics spread apart. Intuitively, it states that for positive curvature, geodesics tend to converge, while for negative curvature, geodesics tend to spread.

In differential geometry and dynamical systems, a closed geodesic on a Riemannian manifold is a geodesic that returns to its starting point with the same tangent direction. It may be formalized as the projection of a closed orbit of the geodesic flow on the tangent space of the manifold.

In geometry, the Clifton–Pohl torus is an example of a compact Lorentzian manifold that is not geodesically complete. While every compact Riemannian manifold is also geodesically complete, this space shows that the same implication does not generalize to pseudo-Riemannian manifolds. It is named after Yeaton H. Clifton and William F. Pohl, who described it in 1962 but did not publish their result.

References

  1. Bishop, Richard L. and Crittenden, Richard J. Geometry of Manifolds. AMS Chelsea Publishing, 2001, pp.224-225.
  2. Hawking, Stephen; Ellis, George (1973). The large scale structure of space-time. Cambridge university press.
  3. Cheeger, Ebin. Comparison Theorems in Riemannian Geometry. North-Holland Publishing Company, 1975, pp. 17-18.