Constitutive heterochromatin

Last updated
C-banding of a human female karyotype showing constitutive heterochromatin C-banding.gif
C-banding of a human female karyotype showing constitutive heterochromatin

Constitutive heterochromatin domains are regions of DNA found throughout the chromosomes of eukaryotes. [2] The majority of constitutive heterochromatin is found at the pericentromeric regions of chromosomes, but is also found at the telomeres and throughout the chromosomes. [2] In humans there is significantly more constitutive heterochromatin found on chromosomes 1, 9, 16, 19 and Y. [3] Constitutive heterochromatin is composed mainly of high copy number tandem repeats known as satellite repeats, minisatellite and microsatellite repeats, and transposon repeats. In humans these regions account for about 200Mb or 6.5% of the total human genome, but their repeat composition makes them difficult to sequence, so only small regions have been sequenced.

Contents

Visualization of constitutive heterochromatin is possible by using the C-banding technique. The regions that stain darker are regions of constitutive heterochromatin. [4] The constitutive heterochromatin stains darker because of the highly condensed nature of the DNA.

Constitutive heterochromatin is not to be confused with facultative heterochromatin, which is less condensed, less stable, and much less polymorphic, and which does not stain when using the C-banding technique.

Possible models for expression of genes found in constitutive heterochromatin. Gene expression heterochromatin.jpg
Possible models for expression of genes found in constitutive heterochromatin.

Function

Heterochromatin vs. euchromatin Heterochromatin vs. euchromatin.svg
Heterochromatin vs. euchromatin

Constitutive heterochromatin is found more commonly in the periphery of the nucleus attached to the nuclear membrane. This concentrates the euchromatic DNA in the center of the nucleus where it can be actively transcribed. During mitosis it is believed that constitutive heterochromatin is necessary for proper segregation of sister chromatids and centromere function. [6] The repeat sequences found at the pericentromeres are not conserved throughout many species and depend more on epigenetic modifications for regulation, while telomeres show more conserved sequences. [2]

Constitutive heterochromatin was thought to be relatively devoid of genes, but researchers have found more than 450 genes in the heterochromatic DNA of Drosophila melanogaster. [5] These regions are highly condensed and epigenetically modified to prevent transcription. For the genes to be transcribed, they must have a mechanism to overcome the silencing that occurs in the rest of the heterochromatin. There are many proposed models for how the genes in these regions are expressed, including the insulation, denial, integration, exploitation, and TE restraining models.[ clarification needed ]

When genes are placed near a region of constitutive heterochromatin, their transcription is usually silenced. This is known as position-effect variegation and can lead to a mosaic phenotype.

Replication and epigenetics

General model for duplication of heterochromatin during cell division General model for duplication of heterochromatin during cell division.svg
General model for duplication of heterochromatin during cell division

Constitutive heterochromatin is replicated late in S phase of the cell cycle and does not participate in meiotic recombination.

Histone modifications are one of the main ways that the cell condenses constitutive heterochromatin. [7] The three most common modifications in constitutive heterochromatin are histone hypoacetylation, histone H3-Lys9 methylation (H3K9), and cytosine methylation. These modifications are also found in other types of DNA, but much less frequently. Cytosine methylation is the most common type, although it is not found in all eukaryotes. In humans there is increased methylation at the centromeres and telomeres, which are composed of constitutive heterochromatin. These modifications can persist through both mitosis and meiosis and are heritable.

SUV39H1 is a histone methyltransferase that methylates H3K9, providing a binding site for heterochromatin protein 1 (HP1). HP1 is involved in the chromatin condensing process that makes DNA inaccessible for transcription. [8] [9]

Diseases

Genetic disorders that result from mutations involving the constitutive heterochromatin tend to affect cell differentiation and are inherited in an autosomal recessive pattern. [6] Disorders include Roberts syndrome and ICF syndrome.

Some cancers are associated with anomalies in constitutive heterochromatin and the proteins involved in its formation and maintenance. Breast cancer is linked to a decrease in the HP1 alpha protein, while non-Hodgkin's lymphoma is linked to hypomethylation of the genome and especially of satellite regions.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Centromere</span> Specialized DNA sequence of a chromosome that links a pair of sister chromatids

The centromere links a pair of sister chromatids together during cell division. This constricted region of chromosome connects the sister chromatids, creating a short arm (p) and a long arm (q) on the chromatids. During mitosis, spindle fibers attach to the centromere via the kinetochore.

<span class="mw-page-title-main">Histone</span> Family proteins package and order the DNA into structural units called nucleosomes.

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

<span class="mw-page-title-main">Euchromatin</span> Lightly packed form of chromatin that is enriched in genes

Euchromatin is a lightly packed form of chromatin that is enriched in genes, and is often under active transcription. Euchromatin stands in contrast to heterochromatin, which is tightly packed and less accessible for transcription. 92% of the human genome is euchromatic.

Heterochromatin is a tightly packed form of DNA or condensed DNA, which comes in multiple varieties. These varieties lie on a continuum between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a role in the expression of genes. Because it is tightly packed, it was thought to be inaccessible to polymerases and therefore not transcribed; however, according to Volpe et al. (2002), and many other papers since, much of this DNA is in fact transcribed, but it is continuously turned over via RNA-induced transcriptional silencing (RITS). Recent studies with electron microscopy and OsO4 staining reveal that the dense packing is not due to the chromatin.

Subtelomeres are segments of DNA between telomeric caps and chromatin.

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how many methyl groups are attached. Methylation events that weaken chemical attractions between histone tails and DNA increase transcription because they enable the DNA to uncoil from nucleosomes so that transcription factor proteins and RNA polymerase can access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different genes.

The family of heterochromatin protein 1 (HP1) consists of highly conserved proteins, which have important functions in the cell nucleus. These functions include gene repression by heterochromatin formation, transcriptional activation, regulation of binding of cohesion complexes to centromeres, sequestration of genes to the nuclear periphery, transcriptional arrest, maintenance of heterochromatin integrity, gene repression at the single nucleosome level, gene repression by heterochromatization of euchromatin, and DNA repair. HP1 proteins are fundamental units of heterochromatin packaging that are enriched at the centromeres and telomeres of nearly all eukaryotic chromosomes with the notable exception of budding yeast, in which a yeast-specific silencing complex of SIR proteins serve a similar function. Members of the HP1 family are characterized by an N-terminal chromodomain and a C-terminal chromoshadow domain, separated by a hinge region. HP1 is also found at some euchromatic sites, where its binding can correlate with either gene repression or gene activation. HP1 was originally discovered by Tharappel C James and Sarah Elgin in 1986 as a factor in the phenomenon known as position effect variegation in Drosophila melanogaster.

RNA-induced transcriptional silencing (RITS) is a form of RNA interference by which short RNA molecules – such as small interfering RNA (siRNA) – trigger the downregulation of transcription of a particular gene or genomic region. This is usually accomplished by posttranslational modification of histone tails which target the genomic region for heterochromatin formation. The protein complex that binds to siRNAs and interacts with the methylated lysine 9 residue of histones H3 (H3K9me2) is the RITS complex.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">SUV39H1</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase SUV39H1 is an enzyme that in humans is encoded by the SUV39H1 gene.

<span class="mw-page-title-main">CBX5 (gene)</span> Protein-coding gene in humans

Chromobox protein homolog 5 is a protein that in humans is encoded by the CBX5 gene. It is a highly conserved, non-histone protein part of the heterochromatin family. The protein itself is more commonly called HP1α. Heterochromatin protein-1 (HP1) has an N-terminal domain that acts on methylated lysines residues leading to epigenetic repression. The C-terminal of this protein has a chromo shadow-domain (CSD) that is responsible for homodimerizing, as well as interacting with a variety of chromatin-associated, non-histone proteins.

<span class="mw-page-title-main">Telomeric repeat–containing RNA</span> Long non-coding RNA transcribed from telomeres

Telomeric repeat–containing RNA (TERRA) is a long non-coding RNA transcribed from telomeres - repetitive nucleotide regions found on the ends of chromosomes that function to protect DNA from deterioration or fusion with neighboring chromosomes. TERRA has been shown to be ubiquitously expressed in almost all cell types containing linear chromosomes - including humans, mice, and yeasts. While the exact function of TERRA is still an active area of research, it is generally believed to play a role in regulating telomerase activity as well as maintaining the heterochromatic state at the ends of chromosomes. TERRA interaction with other associated telomeric proteins has also been shown to help regulate telomere integrity in a length-dependent manner.

SilentInformationRegulator (SIR) proteins are involved in regulating gene expression. SIR proteins organize heterochromatin near telomeres, ribosomal DNA (rDNA), and at silent loci including hidden mating type loci in yeast. The SIR family of genes encodes catalytic and non-catalytic proteins that are involved in de-acetylation of histone tails and the subsequent condensation of chromatin around a SIR protein scaffold. Some SIR family members are conserved from yeast to humans.

<span class="mw-page-title-main">Epigenetics of human herpesvirus latency</span>

Human herpes viruses, also known as HHVs, are part of a family of DNA viruses that cause several diseases in humans. One of the most notable functions of this virus family is their ability to enter a latent phase and lay dormant within animals for extended periods of time. The mechanism that controls this is very complex because expression of viral proteins during latency is decreased a great deal, meaning that the virus must have transcription of its genes repressed. There are many factors and mechanisms that control this process and epigenetics is one way this is accomplished. Epigenetics refers to persistent changes in expression patterns that are not caused by changes to the DNA sequence. This happens through mechanisms such as methylation and acetylation of histones, DNA methylation, and non-coding RNAs (ncRNA). Altering the acetylation of histones creates changes in expression by changing the binding affinity of histones to DNA, making it harder or easier for transcription machinery to access the DNA. Methyl and acetyl groups can also act as binding sites for transcription factors and enzymes that further modify histones or alter the DNA itself.

Epigenetics of human development is the study of how epigenetics effects human development.

<span class="mw-page-title-main">Bromo adjacent homology domain containing 1</span>

Bromo adjacent homology domain containing 1(BAHD1) is a protein that in humans is encoded by the BAHD1 gene. BAHD1 is involved in heterochromatin formation and transcriptional repression.

<span class="mw-page-title-main">Robin Allshire</span>

Robin Campbell Allshire is Professor of Chromosome Biology at University of Edinburgh and a Wellcome Trust Principal Research Fellow. His research group at the Wellcome Trust Centre for Cell Biology focuses on the epigenetic mechanisms governing the assembly of specialised domains of chromatin and their transmission through cell division.

<span class="mw-page-title-main">Thomas Jenuwein</span> German scientist

Thomas Jenuwein is a German scientist working in the fields of epigenetics, chromatin biology, gene regulation and genome function.

<span class="mw-page-title-main">RNA-directed DNA methylation</span> RNA-based gene silencing process

RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences. The RdDM pathway is unique to plants, although other mechanisms of RNA-directed chromatin modification have also been described in fungi and animals. To date, the RdDM pathway is best characterized within angiosperms, and particularly within the model plant Arabidopsis thaliana. However, conserved RdDM pathway components and associated small RNAs (sRNAs) have also been found in other groups of plants, such as gymnosperms and ferns. The RdDM pathway closely resembles other sRNA pathways, particularly the highly conserved RNAi pathway found in fungi, plants, and animals. Both the RdDM and RNAi pathways produce sRNAs and involve conserved Argonaute, Dicer and RNA-dependent RNA polymerase proteins.

H3Y41P is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the phosphorylation the 41st tyrosine residue of the histone H3 protein.

References

  1. "C-Banding". web.udl.es. Retrieved 2015-12-02.
  2. 1 2 3 Saksouk, Nehmé; Simboeck, Elisabeth; Déjardin, Jérôme (2015-01-15). "Constitutive heterochromatin formation and transcription in mammals". Epigenetics & Chromatin . 8: 3. doi: 10.1186/1756-8935-8-3 . ISSN   1756-8935. PMC   4363358 . PMID   25788984.
  3. T. Strachan and A. Read (2004). Human Molecular Genetics 3. Garland Publishing. pp.  256–295. ISBN   978-0-81534182-6.
  4. Angell, Roslyn R.; Jacobs, Patricia A. (1975-12-01). "Lateral asymmetry in human constitutive heterochromatin". Chromosoma. 51 (4): 301–310. doi:10.1007/BF00326317. ISSN   0009-5915. PMID   1175450. S2CID   10118235.
  5. 1 2 Yasuhara, Jiro C.; Wakimoto, Barbara T. (2006-06-01). "Oxymoron no more: the expanding world of heterochromatic genes". Trends in Genetics. 22 (6): 330–338. doi:10.1016/j.tig.2006.04.008. PMID   16690158.
  6. 1 2 Marie-Geneviève Mattei and Judith Luciani. "Heterochromatin, from Chromosome to Protein". Atlas of Genetics and Cytogenetics in Oncology and Haematology. Archived from the original on 27 October 2015. Retrieved 9 November 2015.
  7. Richards, Eric J.; Elgin, Sarah C. R. (2002). "Epigenetic Codes for Heterochromatin Formation and Silencing". Cell. 108 (4): 489–500. doi: 10.1016/S0092-8674(02)00644-X . ISSN   0092-8674. PMID   11909520.
  8. Bártová, Eva; Krejčí, Jana; Harničarová, Andrea; Galiová, Gabriela; Kozubek, Stanislav (2008-08-01). "Histone Modifications and Nuclear Architecture: A Review". Journal of Histochemistry & Cytochemistry. 56 (8): 711–721. doi:10.1369/jhc.2008.951251. ISSN   0022-1554. PMC   2443610 . PMID   18474937.
  9. Lomberk, Gwen; Wallrath, Lori; Urrutia, Raul (2006-01-01). "The Heterochromatin Protein 1 family". Genome Biology. 7 (7): 228. doi: 10.1186/gb-2006-7-7-228 . ISSN   1465-6906. PMC   1779566 . PMID   17224041.