Conway circle theorem

Last updated

A triangle's Conway circle with its six concentric points (solid black), the triangle's incircle (dashed gray), and the centre of both circles (white); solid and dashed line segments of the same colour are equal in length Conway circle theorem.svg
A triangle's Conway circle with its six concentric points (solid black), the triangle's incircle (dashed gray), and the centre of both circles (white); solid and dashed line segments of the same colour are equal in length

In plane geometry, the Conway circle theorem states that when the sides meeting at each vertex of a triangle are extended by the length of the opposite side, the six endpoints of the three resulting line segments lie on a circle whose centre is the incentre of the triangle. The circle on which these six points lie is called the Conway circle of the triangle. [1] [2] [3] The theorem and circle are named after mathematician John Horton Conway.

Contents

Proof

segments of equal color are of equal length
^
I
F
c
P
a
[?]
^
I
F
c
Q
b
[?]
^
I
F
a
P
b
[?]
^
I
F
a
Q
c
[?]
^
I
F
b
P
c
[?]
^
I
F
b
Q
a
=
|
I
P
a
|
=
|
I
Q
a
|
=
|
I
P
b
|
=
|
I
Q
b
|
=
|
I
P
c
|
=
|
I
Q
c
|
{\displaystyle {\begin{aligned}\triangle IF_{c}P_{a}&\cong \triangle IF_{c}Q_{b}\cong \triangle IF_{a}P_{b}\\&\cong \triangle IF_{a}Q_{c}\cong \triangle IF_{b}P_{c}\\&\cong \triangle IF_{b}Q_{a}\\\Rightarrow \,|IP_{a}|&=|IQ_{a}|=|IP_{b}|=|IQ_{b}|\\&=|IP_{c}|=|IQ_{c}|\end{aligned}}} Conway circle theorem proof.svg
segments of equal color are of equal length

Let I be the center of the incircle of triangle ABC, r its radius and Fa, Fb and Fc the three points where the incircle touches the triangle sides a, b and c. Since the (extended) triangle sides are tangents of the incircle it follows that IFa, IFb and IFc are perpendicular to a, b and c. Furthermore the following equalities for line segments hold. |AFc|=|AFb|, |BFc|=|Ba|, |CFa|=|Cb|. With that the six triangles IFcPa, IFcQb, IFaPb, IFaQc, IFbQa and IFbPc all have a side of length |AFc|+|BFc|+|CFa| and a side of length r with a right angle between them. This means that due SAS congruence theorem for triangles all six triangles are congruent, which yields |IPa|=|IQa|=|IPb|=|IQb|=|IPc|=|IQc|. So the six points Pa, Qa, Pb, Qb, Pc and Qc have all the same distance from the triangle incenter I, that is they lie on a common circle with center I.

Additional properties

The radius of the Conway circle is

where and are the inradius and semiperimeter of the triangle. [3]

Generalisation

Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster)) Side divider theorem2a.svg
Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster))

Conway's circle is a special case of a more general circle for a triangle that can be obtained as follows: Given any △ABC with an arbitrary point P on line AB. Construct BQ = BP, CR = CQ, AS = AR, BT = BS, CU = CT. Then AU = AP, and PQRSTU is cyclic. [4]

If you you place P on the extended triangle side AB such that BP=b and BP being completely outside the triangle then the above constructions yield Conway's circle theorem.

See also

Related Research Articles

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. The triangle's interior is a two-dimensional region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex.

<span class="mw-page-title-main">Right triangle</span> Triangle containing a 90-degree angle

A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle.

<span class="mw-page-title-main">Bisection</span> Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle . In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the side opposite the vertex. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

<span class="mw-page-title-main">Nine-point circle</span> Circle constructed from a triangle

In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are:

<span class="mw-page-title-main">Incircle and excircles</span> Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

<span class="mw-page-title-main">Orthocentric system</span> 4 planar points which are all orthocenters of triangles formed by the other 3

In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular, and the four circles passing through any three of the four points have the same radius.

<span class="mw-page-title-main">Equilateral triangle</span> Shape with three equal sides

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

<span class="mw-page-title-main">Feuerbach point</span> Point where the incircle and nine-point circle of a triangle are tangent

In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach.

In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Tangential quadrilateral</span> Polygon whose four sides all touch a circle

In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.

<span class="mw-page-title-main">Fuhrmann circle</span>

In geometry, the Fuhrmann circle of a triangle, named after the German Wilhelm Fuhrmann (1833–1904), is the circle that has as a diameter the line segment between the orthocenter and the Nagel point . This circle is identical with the circumcircle of the Fuhrmann triangle.

<span class="mw-page-title-main">Steiner inellipse</span> Unique ellipse tangent to all 3 midpoints of a given triangles sides

In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

<span class="mw-page-title-main">Ex-tangential quadrilateral</span> Convex 4-sided polygon whose sidelines are all tangent to an outside circle

In Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter. The excenter lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect. The ex-tangential quadrilateral is closely related to the tangential quadrilateral.

<span class="mw-page-title-main">Tangential trapezoid</span> Trapezoid whose sides are all tangent to the same circle

In Euclidean geometry, a tangential trapezoid, also called a circumscribed trapezoid, is a trapezoid whose four sides are all tangent to a circle within the trapezoid: the incircle or inscribed circle. It is the special case of a tangential quadrilateral in which at least one pair of opposite sides are parallel. As for other trapezoids, the parallel sides are called the bases and the other two sides the legs. The legs can be equal, but they don't have to be.

<span class="mw-page-title-main">Right kite</span> Symmetrical quadrilateral

In Euclidean geometry, a right kite is a kite that can be inscribed in a circle. That is, it is a kite with a circumcircle. Thus the right kite is a convex quadrilateral and has two opposite right angles. If there are exactly two right angles, each must be between sides of different lengths. All right kites are bicentric quadrilaterals, since all kites have an incircle. One of the diagonals divides the right kite into two right triangles and is also a diameter of the circumcircle.

<span class="mw-page-title-main">Mixtilinear incircles of a triangle</span> Circle tangent to two sides of a triangle and its circumcircle

In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex is called the -mixtilinear incircle. Every triangle has three unique mixtilinear incircles, one corresponding to each vertex.

References

  1. "John Horton Conway". www.cardcolm.org. Archived from the original on 20 May 2020. Retrieved 29 May 2020.
  2. Weisstein, Eric W. "Conway Circle". MathWorld . Retrieved 29 May 2020.
  3. 1 2 Francisco Javier García Capitán (2013). "A Generalization of the Conway Circle" (PDF). Forum Geometricorum. 13: 191–195.
  4. Michael de Villiers (2023). "Conway's Circle Theorem as a Special Case of a More General Side Divider Theorem". Learning and Teaching Mathematics (34): 37–42.