Corticomuscular coherence

Last updated

Corticomuscular coherence relates to the synchrony in the neural activity of brain's cortical areas and muscle. The neural activities are picked up by electrophysiological recordings from the brain (e.g. EEG, MEG, ECoG, etc.) and muscle (EMG). It is a method to study the neural control of movement.

Contents

Physiology

Corticomuscular coherence was initially reported between MEG and EMG [1] and is widely studied between EMG and EEG, MEG, etc.

The origins of corticomuscular coherence seem to be communication in corticospinal pathways between primary motor cortex and muscles. While the role of descending corticomuscular pathways in generation of coherence are more clear, the role of ascending sensory spinocortical pathways are less certain.

Corticomuscular coherence has been of special interest in alpha band (about 10 Hz), in Beta band (15–30 Hz), and in Gamma band (35–60 Hz).

Mathematics and statistics

A classic and commonly used approach to assess the synchrony between neural signals is to use Coherence. [2]

Statistical significance of coherence is found as function of number of data segments with assumption of the signals' normal distribution. [3] Alternatively non-parametric techniques such as bootstrapping can be used.

Computational models

Modeling corticomuscular coherence. (a) Power spectrum of simulated local field potential, (b) Power spectrum of simulated electromyogram. (c) Simulated corticomuscular coherence. (d) Human corticomuscular coherence data. Figure8 100dpi.png
Modeling corticomuscular coherence. (a) Power spectrum of simulated local field potential, (b) Power spectrum of simulated electromyogram. (c) Simulated corticomuscular coherence. (d) Human corticomuscular coherence data.

Corticomuscular coherence has been simulated in models [4] [5] which posit that motor commands are encoded in the spatial pattern of beta band synchronization patterns in motor cortex. Specific cortical oscillation patterns can be spatially filtered by the dendritic arbors of the corticospinal fibers to selectively shape the descending drive to the motoneurons in the spinal cord. Cortical oscillations can thus be translated into steady muscle forces which are maintained for the duration of the oscillation pattern. Although the oscillations serve only as the carrier for the motor command, weak traces of the beta oscillation are still transmitted to the muscle. These traces appear as weak levels of beta band corticomuscular coherence which are consistent with those observed in physiology. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Magnetoencephalography</span> Mapping brain activity by recording magnetic fields produced by currents in the brain

Magnetoencephalography (MEG) is a functional neuroimaging technique for mapping brain activity by recording magnetic fields produced by electrical currents occurring naturally in the brain, using very sensitive magnetometers. Arrays of SQUIDs are currently the most common magnetometer, while the SERF magnetometer is being investigated for future machines. Applications of MEG include basic research into perceptual and cognitive brain processes, localizing regions affected by pathology before surgical removal, determining the function of various parts of the brain, and neurofeedback. This can be applied in a clinical setting to find locations of abnormalities as well as in an experimental setting to simply measure brain activity.

An evoked potential or evoked response is an electrical potential in a specific pattern recorded from a specific part of the nervous system, especially the brain, of a human or other animals following presentation of a stimulus such as a light flash or a pure tone. Different types of potentials result from stimuli of different modalities and types. Evoked potential is distinct from spontaneous potentials as detected by electroencephalography (EEG), electromyography (EMG), or other electrophysiologic recording method. Such potentials are useful for electrodiagnosis and monitoring that include detections of disease and drug-related sensory dysfunction and intraoperative monitoring of sensory pathway integrity.

<span class="mw-page-title-main">Neural pathway</span> Connection formed between neurons that allows neurotransmission

In neuroanatomy, a neural pathway is the connection formed by axons that project from neurons to make synapses onto neurons in another location, to enable neurotransmission. Neurons are connected by a single axon, or by a bundle of axons known as a nerve tract, or fasciculus. Shorter neural pathways are found within grey matter in the brain, whereas longer projections, made up of myelinated axons, constitute white matter.

<span class="mw-page-title-main">Reticular formation</span> Spinal trigeminal nucleus

The reticular formation is a set of interconnected nuclei that are located throughout the brainstem. It is not anatomically well defined, because it includes neurons located in different parts of the brain. The neurons of the reticular formation make up a complex set of networks in the core of the brainstem that extend from the upper part of the midbrain to the lower part of the medulla oblongata. The reticular formation includes ascending pathways to the cortex in the ascending reticular activating system (ARAS) and descending pathways to the spinal cord via the reticulospinal tracts.

A gamma wave or gamma rhythm is a pattern of neural oscillation in humans with a frequency between 25 and 140 Hz, the 40 Hz point being of particular interest. Gamma rhythms are correlated with large-scale brain network activity and cognitive phenomena such as working memory, attention, and perceptual grouping, and can be increased in amplitude via meditation or neurostimulation. Altered gamma activity has been observed in many mood and cognitive disorders such as Alzheimer's disease, epilepsy, and schizophrenia.

Beta waves, or beta rhythm, are a type of neural oscillations (brainwave) in the brain with a frequency range of between 12.5 and 30 Hz. Beta waves can be split into three sections: Low Beta Waves ; Beta Waves ; and High Beta Waves. Beta states are the states associated with normal waking consciousness.

Alpha waves, or the alpha rhythm, are neural oscillations in the frequency range of 8–12 Hz likely originating from the synchronous and coherent electrical activity of thalamic pacemaker cells in humans. Historically, they are also called "Berger's waves" after Hans Berger, who first described them when he invented the EEG in 1924.

In the field of computational neuroscience, the theory of metastability refers to the human brain's ability to integrate several functional parts and to produce neural oscillations in a cooperative and coordinated manner, providing the basis for conscious activity.

<span class="mw-page-title-main">Neural oscillation</span> Brainwaves, repetitive patterns of neural activity in the central nervous system

Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscopic oscillations, which can be observed in an electroencephalogram. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well-known example of macroscopic neural oscillations is alpha activity.

Theta waves generate the theta rhythm, a neural oscillation in the brain that underlies various aspects of cognition and behavior, including learning, memory, and spatial navigation in many animals. It can be recorded using various electrophysiological methods, such as electroencephalogram (EEG), recorded either from inside the brain or from electrodes attached to the scalp.

<span class="mw-page-title-main">Mu wave</span> Electrical activity in the part of the brain controlling voluntary movement

The sensorimotor mu rhythm, also known as mu wave, comb or wicket rhythms or arciform rhythms, are synchronized patterns of electrical activity involving large numbers of neurons, probably of the pyramidal type, in the part of the brain that controls voluntary movement. These patterns as measured by electroencephalography (EEG), magnetoencephalography (MEG), or electrocorticography (ECoG), repeat at a frequency of 7.5–12.5 Hz, and are most prominent when the body is physically at rest. Unlike the alpha wave, which occurs at a similar frequency over the resting visual cortex at the back of the scalp, the mu rhythm is found over the motor cortex, in a band approximately from ear to ear. People suppress mu rhythms when they perform motor actions or, with practice, when they visualize performing motor actions. This suppression is called desynchronization of the wave because EEG wave forms are caused by large numbers of neurons firing in synchrony. The mu rhythm is even suppressed when one observes another person performing a motor action or an abstract motion with biological characteristics. Researchers such as V. S. Ramachandran and colleagues have suggested that this is a sign that the mirror neuron system is involved in mu rhythm suppression, although others disagree.

Recurrent thalamo-cortical resonance is an observed phenomenon of oscillatory neural activity between the thalamus and various cortical regions of the brain. It is proposed by Rodolfo Llinas and others as a theory for the integration of sensory information into the whole of perception in the brain. Thalamocortical oscillation is proposed to be a mechanism of synchronization between different cortical regions of the brain, a process known as temporal binding. This is possible through the existence of thalamocortical networks, groupings of thalamic and cortical cells that exhibit oscillatory properties.

<span class="mw-page-title-main">Electroencephalography</span> Electrophysiological monitoring method to record electrical activity of the brain

Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG". Clinical interpretation of EEG recordings is most often performed by visual inspection of the tracing or quantitative EEG analysis.

<span class="mw-page-title-main">Primary motor cortex</span> Brain region

The primary motor cortex is a brain region that in humans is located in the dorsal portion of the frontal lobe. It is the primary region of the motor system and works in association with other motor areas including premotor cortex, the supplementary motor area, posterior parietal cortex, and several subcortical brain regions, to plan and execute voluntary movements. Primary motor cortex is defined anatomically as the region of cortex that contains large neurons known as Betz cells, which, along with other cortical neurons, send long axons down the spinal cord to synapse onto the interneuron circuitry of the spinal cord and also directly onto the alpha motor neurons in the spinal cord which connect to the muscles.

The neuroscience of rhythm refers to the various forms of rhythm generated by the central nervous system (CNS). Nerve cells, also known as neurons in the human brain are capable of firing in specific patterns which cause oscillations. The brain possesses many different types of oscillators with different periods. Oscillators are simultaneously outputting frequencies from .02 Hz to 600 Hz. It is now well known that a computer is capable of running thousands of processes with just one high-frequency clock. Humans have many different clocks as a result of evolution. Prior organisms had no need for a fast-responding oscillator. This multi-clock system permits quick response to constantly changing sensory input while still maintaining the autonomic processes that sustain life. This method modulates and controls a great deal of bodily functions.

Pain empathy is a specific variety of empathy that involves recognizing and understanding another person's pain.

Sharp waves and ripples (SWRs) are oscillatory patterns produced by extremely synchronised activity of neurons in the mammalian hippocampus and neighbouring regions which occur spontaneously in idle waking states or during NREM sleep. They can be observed with a variety of imaging methods, such as EEG. They are composed of large amplitude sharp waves in local field potential and produced by tens of thousands of neurons firing together within 30–100 ms window. They are some of the most synchronous oscillations patterns in the brain, making them susceptible to pathological patterns such as epilepsy.They have been extensively characterised and described by György Buzsáki and have been shown to be involved in memory consolidation in NREM sleep and the replay of memories acquired during wakefulness.

Intermuscular Coherence is a measure to quantify correlations between the activity of two muscles, which is often assessed using electromyography. The correlations in muscle activity are quantified in frequency domain, and therefore referred to as intermuscular coherence.

Corticocortical coherence is referred to the synchrony in the neural activity of different cortical brain areas. The neural activities are picked up by electrophysiological recordings from the brain. It is a method to study the brain's neural communication and function at rest or during functional tasks.

<span class="mw-page-title-main">Eberhard Fetz</span> American neuroscientist, academic and researcher

Eberhard Erich Fetz is an American neuroscientist, academic and researcher. He is a Professor of Physiology and Biophysics and DXARTS at the University of Washington.

References

  1. Conway, B. A., Halliday, D. M., Farmer, S. F., Shahani, U., Maas, P., Weir, A. I., & Rosenberg, J. R. (1995). Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol, 489 ( Pt 3), 917–924. http://doi.org/10.1113/jphysiol.1995.sp021104
  2. Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF (1995). "A framework for the analysis of mixed time series/point process data—Theory and application to the study of physiological tremor, single motor unit discharges and electromyograms". Progress in Biophysics and Molecular Biology. 64 (2–3): 237–278. doi: 10.1016/S0079-6107(96)00009-0 . PMID   8987386.
  3. Halliday, D. M., & Rosenberg, J. R. (1999). Time and frequency domain analysis of spike train and time series data. In Modern techniques in neuroscience research (pp. 503–543). Springer. Retrieved from http://doi.org/10.1007/978-3-642-58552-4_18
  4. 1 2 Heitmann S, Boonstra T, Gong P, Breakspear M, Ermentrout B (2015). "The rhythms of steady posture: Motor commands as spatially organized oscillation patterns". Neurocomputing. 170: 3–14. doi:10.1016/j.neucom.2015.01.088.
  5. Heitmann S, Boonstra T, Breakspear M (2013). "A dendritic mechanism for decoding traveling waves: Principles and applications to motor cortex". PLOS Computational Biology. 9 (10): e1003260. Bibcode:2013PLSCB...9E3260H. doi: 10.1371/journal.pcbi.1003260 . PMC   3814333 . PMID   24204220.
  6. Baker SN, Kilner JM, Pinches RN, Lemon RN (1999). "The role of synchrony and oscillations in the motor output". Experimental Brain Research. 128 (1): 109–117. doi:10.1007/s002210050825. PMID   10473748. S2CID   13533875.