Cosmological natural selection

Last updated

Cosmological natural selection, also called the fecund universes, is a hypothesis proposed by Lee Smolin intended as a scientific alternative to the anthropic principle. It addresses the problem of complexity in our universe, which is largely unexplained. The hypothesis suggests that a process analogous to biological natural selection applies at the grandest of scales. Smolin published the idea in 1992 and summarized it in a book aimed at a lay audience called The Life of the Cosmos .

Contents

Hypothesis

Black holes have a role in natural selection. In fecund theory a collapsing[ clarification needed ] black hole causes the emergence of a new universe on the "other side", whose fundamental constant parameters (masses of elementary particles, Planck constant, elementary charge, and so forth) may differ slightly from those of the universe where the black hole collapsed. Each universe thus gives rise to as many new universes as it has black holes. The theory contains the evolutionary ideas of "reproduction" and "mutation" of universes, and so is formally analogous to models of population biology.

Alternatively, black holes play a role in cosmological natural selection by reshuffling only some matter affecting the distribution of elementary quark universes. The resulting population of universes can be represented as a distribution of a landscape of parameters where the height of the landscape is proportional to the numbers of black holes that a universe with those parameters will have. Applying reasoning borrowed from the study of fitness landscapes in population biology, one can conclude that the population is dominated by universes whose parameters drive the production of black holes to a local peak in the landscape. This was the first use of the notion of a landscape of parameters in physics.

Leonard Susskind, who later promoted a similar string theory landscape, stated:

I'm not sure why Smolin's idea didn't attract much attention. I actually think it deserved far more than it got. [1]

However, Susskind also argued that, since Smolin's theory relies on information transfer from the parent universe to the baby universe through a black hole, it ultimately makes no sense as a theory of cosmological natural selection. [1] According to Susskind and many other physicists, the last decade of black hole physics has shown us that no information that goes into a black hole can be lost. [1] Even Stephen Hawking, who was the largest proponent of the idea that information is lost in a black hole, later reversed his position. [1] The implication is that information transfer from the parent universe into the baby universe through a black hole is not conceivable. [1]

Smolin has noted that the string theory landscape is not Popper-falsifiable if other universes are not observable.[ citation needed ] This is the subject of the Smolin–Susskind debate concerning Smolin's argument: "[The] Anthropic Principle cannot yield any falsifiable predictions, and therefore cannot be a part of science." [1] There are then only two ways out: traversable wormholes connecting the different parallel universes, and "signal nonlocality", as described by Antony Valentini, a scientist at the Perimeter Institute.[ clarification needed ]

In a critical review of The Life of the Cosmos, astrophysicist Joe Silk suggested that our universe falls short by about four orders of magnitude from being maximal for the production of black holes. [2] In his book Questions of Truth , particle physicist John Polkinghorne puts forward another difficulty with Smolin's thesis: one cannot impose the consistent multiversal time required to make the evolutionary dynamics work, since short-lived universes with few descendants would then dominate long-lived universes with many descendants. [3] Smolin responded to these criticisms in Life of the Cosmos and later scientific papers.

When Smolin published the theory in 1992, he proposed as a prediction of his theory that no neutron star should exist with a mass of more than 1.6 times the mass of the sun.[ citation needed ] Later this figure was raised to two solar masses following more precise modeling of neutron star interiors by nuclear astrophysicists. If a more massive neutron star was ever observed, it would show that our universe's natural laws were not tuned for maximal black hole production, because the mass of the strange quark could be retuned to lower the mass threshold for production of a black hole. A 1.97-solar-mass pulsar was discovered in 2010. [4] In 2019, neutron star PSR J0740+6620 was discovered with a solar-mass of 2.08 ±.07.

In 1992 Smolin also predicted that inflation, if true, must only be in its simplest form, governed by a single field and parameter.

This idea was further studied by Nikodem Poplawski. [5]

See also

Related Research Articles

The anthropic principle, also known as the "observation selection effect", is the hypothesis, first proposed in 1957 by Robert Dicke, that the range of possible observations that could be made about the universe is limited by the fact that observations could happen only in a universe capable of developing intelligent life. Proponents of the anthropic principle argue that it explains why the universe has the age and the fundamental physical constants necessary to accommodate conscious life, since if either had been different, no one would have been around to make observations. Anthropic reasoning is often used to deal with the idea that the universe seems to be finely tuned for the existence of life.

The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Leonard Susskind said, “The three-dimensional world of ordinary experience––the universe filled with galaxies, stars, planets, houses, boulders, and people––is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

<span class="mw-page-title-main">Multiverse</span> Hypothetical group of multiple universes

The multiverse is the hypothetical set of all universes. Together, these universes are presumed to comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The different universes within the multiverse are called "parallel universes", "flat universes", "other universes", "alternate universes", "multiple universes", "plane universes", "parent and child universes", "many universes", or "many worlds". One common assumption is that the multiverse is a "patchwork quilt of separate universes all bound by the same laws of physics."

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

<span class="mw-page-title-main">Cosmogony</span> Branch of science or a theory concerning the origin of the universe

Cosmogony is any model concerning the origin of the cosmos or the universe.

<i>A Brief History of Time</i> 1988 book by Stephen Hawking

A Brief History of Time: From the Big Bang to Black Holes is a book on theoretical cosmology by English physicist Stephen Hawking. It was first published in 1988. Hawking wrote the book for readers who had no prior knowledge of physics.

<span class="mw-page-title-main">Lee Smolin</span> American theoretical physicist (born 1955)

Lee Smolin is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the philosophy department at the University of Toronto. Smolin's 2006 book The Trouble with Physics criticized string theory as a viable scientific theory. He has made contributions to quantum gravity theory, in particular the approach known as loop quantum gravity. He advocates that the two primary approaches to quantum gravity, loop quantum gravity and string theory, can be reconciled as different aspects of the same underlying theory. He also advocates an alternative view on space and time that he calls temporal naturalism. His research interests also include cosmology, elementary particle theory, the foundations of quantum mechanics, and theoretical biology.

Frank Jennings Tipler is an American mathematical physicist and cosmologist, holding a joint appointment in the Departments of Mathematics and Physics at Tulane University. Tipler has written books and papers on the Omega Point based on Pierre Teilhard de Chardin's religious ideas, which he claims is a mechanism for the resurrection of the dead. He is also known for his theories on the Tipler cylinder time machine. His work has attracted criticism, most notably from Quaker and systems theorist George Ellis who has argued that his theories are largely pseudoscience.

<i>The Life of the Cosmos</i> Book by Lee Smolin

The Life of the Cosmos is the debut non-fiction book by American theoretical physicist Lee Smolin. The book was initially published on January 1, 1997 by Oxford University Press.

The characterization of the universe as finely tuned suggests that the occurrence of life in the universe is very sensitive to the values of certain fundamental physical constants and that values different from the observed ones are more probable. If the values of any of certain free parameters in contemporary physical theories had differed only slightly from those observed, the evolution of the universe would have proceeded very differently, and "life as we know it" might not have been possible.

<span class="mw-page-title-main">Leonard Susskind</span> American theoretical physicist (born 1940)

Leonard Susskind is an American theoretical physicist, who is a professor of theoretical physics at Stanford University, and founding director of the Stanford Institute for Theoretical Physics. His research interests include string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the US National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.

<span class="mw-page-title-main">Andrei Linde</span> Russian-American theoretical physicist

Andrei Dmitriyevich Linde is a Russian-American theoretical physicist and the Harald Trap Friis Professor of Physics at Stanford University.

In string theory, the string theory landscape is the collection of possible false vacua, together comprising a collective "landscape" of choices of parameters governing compactifications.

Lorentz invariance measures the universal features in hypothetical loop quantum gravity universes. The various hypothetical multiverse loop quantum gravity universe design models could have various general covariant principle results.

The following outline is provided as an overview of and topical guide to black holes:

Observations suggest that the expansion of the universe will continue forever. The prevailing theory is that the universe will cool as it expands, eventually becoming too cold to sustain life. For this reason, this future scenario once popularly called "Heat Death" is now known as the "Big Chill" or "Big Freeze".

<span class="mw-page-title-main">Matter</span> Something that has mass and volume

In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, matter generally includes atoms and anything made up of them, and any particles that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or heat. Matter exists in various states. These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.

<i>The Cosmic Landscape</i> Book by Leonard Susskind

The Cosmic Landscape is a non-fiction popular science book on the anthropic principle and string theory landscape. It is written by theoretical physicist Leonard Susskind. The book was initially published by Little, Brown and Company on December 12, 2005.

References

  1. 1 2 3 4 5 6 "Smolin vs. Susskind: The Anthropic Principle" Edge (August 18, 2004)
  2. Joe Silk (1997) "Holistic Cosmology," Science277: 644.
  3. John Polkinghorne and Nicholas Beale (2009) Questions of Truth . Westminster John Knox: 106-111.
  4. Hessels, Jason; Roberts, Mallory; Ransom, Scott; Pennucci, Tim; Demorest, Paul (October 27, 2010). "Shapiro delay measurement of a two solar mass neutron star". Nature. 467 (7319): 1081–1083. arXiv: 1010.5788 . doi:10.1038/nature09466. PMID   20981094. S2CID   205222609.
  5. Finkel, Michael (2014-02-19). "Are We Living in a Black Hole?". nationalgeographic.com. Archived from the original on October 4, 2019. Retrieved 7 September 2020.