Coxal gland

Last updated
Coxal gland and its components Coxal-gland.jpg
Coxal gland and its components

The coxal gland is a gland found in some arthropods, for collecting and excreting urine. They are found in all arachnids (with the exception of some Acari), and in other chelicerates, such as horseshoe crabs. [1] The coxal gland is thought to be homologous with the antennal gland of crustaceans. The gland consists of an end sac (saccule), a long duct (labyrinth) and a terminal bladder (reservoir). [2] There is generally only one pair (two in some spiders), and they open on the coxae of the walking legs [1] or at the base of the second antennae in the case of the crustacean antennal gland. [3] :70–71 The coxal secretion of adult female ticks of Ornithodoros erraticus contains a sex pheromone. [4]

Contents

Excretory system

The excretory system of the prawn lacks a true kidney. The following parts are found in its excretory system: [3]

Communication

In invertebrates with coxal glands, many forms of communication are conveyed via chemicals in the urine. Several studies have shown that in crayfish, these chemicals convey information such as reproductive capability, the identity of individual crayfish, as well as their aggression levels and hierarchical status. [5] For example, when two male crayfish meet, they will engage in combat. Combat determines which individual is "dominant" or "submissive" in the hierarchy. These encounters affect their aggression levels, regulated by serotonin, and thus changes the chemical composition of their urine . The chemical changes undergone will mediate further encounters, as they will offer crayfish a certain level of "familiarity" with each other. The chemicals in their urine communicate their rank to other crayfish and while the intensity of the encounter remains the same, the length of the encounter will be much shorter. [6]

Communication interference

Foreign chemicals introduced into the ecosystem have the potential to interfere with the arthropod's chemical receptors. Insecticide run-off from agricultural applications has been shown to inhibit communication in crayfish. Neonicotinoids are widely used systemic insecticides that act as a neurotoxin to most arthropods that are water soluble and frequently make it into various waterways. [7] Neonicotinoids bind to nicotinic acetylcholine receptors (nAChR), which kills insects by overstimulating them. nAChRs can be found in the interneurons of the brain, neuromuscular junctions, and the olfactory bulb. [8] Neonicotinoids binding to these receptors prevents the chemicals involved in communication from binding to their proper receptors. As a result, crayfish exposed to these insecticides at sublethal doses lose their ability to detect certain cues. Crayfish will fail to recognize individuals that they have had previous encounters with, as well as their hierarchical status. Crayfish also will fail to find food, and lab experiments show that they display no preference for environments with or without food. [8]

Related Research Articles

<span class="mw-page-title-main">Kidney</span> Organ that filters blood and produces urine in humans

In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organs that are a multilobar, multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located on the left and right in the retroperitoneal space, and in adult humans are about 12 centimetres in length. They receive blood from the paired renal arteries; blood exits into the paired renal veins. Each kidney is attached to a ureter, a tube that carries excreted urine to the bladder.

<span class="mw-page-title-main">Pregnancy (mammals)</span> Period of reproduction

In mammals, pregnancy is the period of reproduction during which a female carries one or more live offspring from implantation in the uterus through gestation. It begins when a fertilized zygote implants in the female's uterus, and ends once it leaves the uterus.

<span class="mw-page-title-main">Skin</span> Soft outer covering organ of vertebrates

Skin is the layer of usually soft, flexible outer tissue covering the body of a vertebrate animal, with three main functions: protection, regulation, and sensation.

<span class="mw-page-title-main">Bladder</span> Organ in vertebrates that collects and stores urine from the kidneys before disposal

The bladder is a hollow organ in humans and other vertebrates that stores urine from the kidneys. In placental mammals, urine enters the bladder via the ureters and exits via the urethra during urination. In humans, the bladder is a distensible organ that sits on the pelvic floor. The typical adult human bladder will hold between 300 and 500 ml before the urge to empty occurs, but can hold considerably more.

<span class="mw-page-title-main">Chelicerata</span> Subphylum of arthropods

The subphylum Chelicerata constitutes one of the major subdivisions of the phylum Arthropoda. Chelicerates include the sea spiders, horseshoe crabs, and arachnids, as well as a number of extinct lineages, such as the eurypterids and chasmataspidids.

<span class="mw-page-title-main">Prostate</span> Gland of the male reproductive system

The prostate is both an accessory gland of the male reproductive system and a muscle-driven mechanical switch between urination and ejaculation. It is found in all male mammals. It differs between species anatomically, chemically, and physiologically. Anatomically, the prostate is found below the bladder, with the urethra passing through it. It is described in gross anatomy as consisting of lobes and in microanatomy by zone. It is surrounded by an elastic, fibromuscular capsule and contains glandular tissue, as well as connective tissue.

The excretory system is a passive biological system that removes excess, unnecessary materials from the body fluids of an organism, so as to help maintain internal chemical homeostasis and prevent damage to the body. The dual function of excretory systems is the elimination of the waste products of metabolism and to drain the body of used up and broken down components in a liquid and gaseous state. In humans and other amniotes, most of these substances leave the body as urine and to some degree exhalation, mammals also expel them through sweating.

<span class="mw-page-title-main">Bulbourethral gland</span> Gland in males to help with sperm health

The bulbourethral glands or Cowper's glands are two small exocrine and accessory glands in the reproductive system of many male mammals. They are homologous to Bartholin's glands in females. The bulbourethral glands are responsible for producing a pre-ejaculate fluid called Cowper's fluid, which is secreted during sexual arousal, neutralizing the acidity of the urethra in preparation for the passage of sperm cells. The paired glands are found adjacent to the urethra just below the prostate, seen best by screening (medicine) MRI as a tool in preventative healthcare in males. Screening MRI may be performed when there is a positive prostate-specific antigen on basic laboratory tests. Prostate cancer is the second-most common cause of cancer-related mortality in males in the USA.

<span class="mw-page-title-main">Trematoda</span> Class of parasitic flatworms

Trematoda is a class of flatworms known as flukes or trematodes. They are obligate internal parasites with a complex life cycle requiring at least two hosts. The intermediate host, in which asexual reproduction occurs, is usually a snail. The definitive host, where the flukes sexually reproduce, is a vertebrate. Infection by trematodes can cause disease in all five traditional vertebrate classes: mammals, birds, amphibians, reptiles, and fish.

<span class="mw-page-title-main">Seminal vesicles</span> Pair of simple tubular glands

The seminal vesicles are a pair of convoluted tubular accessory glands that lie behind the urinary bladder of male mammals. They secrete fluid that largely composes the semen.

<span class="mw-page-title-main">Vas deferens</span> Part of the male reproductive system of many vertebrates

The vas deferens, ductus deferens, or sperm duct is part of the male reproductive system of many vertebrates. The vasa deferentia are paired sex organs that transport sperm from the epididymides to the ejaculatory ducts in anticipation of ejaculation. The vas deferens is a partially coiled tube which exits the abdominal cavity through the inguinal canal.

<span class="mw-page-title-main">Transitional epithelium</span> A type of tissue

Transitional epithelium is a type of stratified epithelium. Transitional epithelium is a type of tissue that changes shape in response to stretching. The transitional epithelium usually appears cuboidal when relaxed and squamous when stretched. This tissue consists of multiple layers of epithelial cells which can contract and expand in order to adapt to the degree of distension needed. Transitional epithelium lines the organs of the urinary system and is known here as urothelium. The bladder, for example, has a need for great distension.

The anal glands or anal sacs are small glands near the anus in many mammals. They are situated in between the external anal sphincter muscle and internal anal sphincter muscle. In non-human mammals, the secretions of the anal glands contain mostly volatile organic compounds with a strong odor, and they are thus functionally involved in communication. Depending upon the species, they may be involved in territory marking, individual identification, and sexual signalling, as well as defense. Their function in humans is unclear.

<span class="mw-page-title-main">Octopamine</span> Group of stereoisomers

Octopamine (OA), also known as para-octopamine and norsynephrine among synonyms, is an organic chemical closely related to norepinephrine, and synthesized biologically by a homologous pathway. Octopamine is often considered the major "fight-or-flight" neurohormone of invertebrates. Its name is derived from the fact that it was first identified in the salivary glands of the octopus.

The nephridium is an invertebrate organ, found in pairs and performing a function similar to the vertebrate kidneys. Nephridia remove metabolic wastes from an animal's body. Nephridia come in two basic categories: metanephridia and protonephridia. All nephridia- and kidney- having animals belong to the clade Nephrozoa.

<span class="mw-page-title-main">Arthropod head problem</span> Dispute concerning the evolution of arthropods

The (pan)arthropod head problem is a long-standing zoological dispute concerning the segmental composition of the heads of the various arthropod groups, and how they are evolutionarily related to each other. While the dispute has historically centered on the exact make-up of the insect head, it has been widened to include other living arthropods, such as chelicerates, myriapods, and crustaceans, as well as fossil forms, such as the many arthropods known from exceptionally preserved Cambrian faunas. While the topic has classically been based on insect embryology, in recent years a great deal of developmental molecular data has become available. Dozens of more or less distinct solutions to the problem, dating back to at least 1897, have been published, including several in the 2000s.

<span class="mw-page-title-main">Maxilla (arthropod mouthpart)</span>

In arthropods, the maxillae are paired structures present on the head as mouthparts in members of the clade Mandibulata, used for tasting and manipulating food. Embryologically, the maxillae are derived from the 4th and 5th segment of the head and the maxillary palps; segmented appendages extending from the base of the maxilla represent the former leg of those respective segments. In most cases, two pairs of maxillae are present and in different arthropod groups the two pairs of maxillae have been variously modified. In crustaceans, the first pair are called maxillulae.

The development of the reproductive system is the part of embryonic growth that results in the sex organs and contributes to sexual differentiation. Due to its large overlap with development of the urinary system, the two systems are typically described together as the genitourinary system.

Urologic diseases or conditions include urinary tract infections, kidney stones, bladder control problems, and prostate problems, among others. Some urologic conditions do not affect a person for that long and some are lifetime conditions. Kidney diseases are normally investigated and treated by nephrologists, while the specialty of urology deals with problems in the other organs. Gynecologists may deal with problems of incontinence in women.

<span class="mw-page-title-main">Insect morphology</span> Description of the physical form of insects

Insect morphology is the study and description of the physical form of insects. The terminology used to describe insects is similar to that used for other arthropods due to their shared evolutionary history. Three physical features separate insects from other arthropods: they have a body divided into three regions, three pairs of legs, and mouthparts located outside of the head capsule. This position of the mouthparts divides them from their closest relatives, the non-insect hexapods, which include Protura, Diplura, and Collembola.

References

  1. 1 2 Colin Little (1983). "Chelicerates". The Colonisation of Land: Origins and Adaptations of Terrestrial Animals. Cambridge University Press. pp. 106–126. ISBN   978-0-521-25218-8.
  2. H. S. Bhamrah & Kavita Juneja (2002). "Scorpions". An Introduction to Arthropoda (2nd ed.). Anmol Publications. pp. 317–342. ISBN   978-81-261-0673-8.
  3. 1 2 Kibenge, Frederick S. B.; Strange, Richard J. (2021-01-01). "Chapter 1 - Introduction to the anatomy and physiology of the major aquatic animal species in aquaculture". In Kibenge, Frederick S. B.; Baldisserotto, Bernardo; Chong, Roger Sie-Maen (eds.). Aquaculture Pharmacology. Academic Press. pp. 1–111. doi:10.1016/B978-0-12-821339-1.00001-5. ISBN   978-0-12-821339-1.
  4. Schlein, Y.; Gunders, A. E. (1981). "Pheromone of Ornithodoros spp. (Argasidae) in the coxal fluid of female ticks". Parasitology. 82 (3): 467–471. doi:10.1017/S0031182000066993. S2CID   85691239.
  5. Kubec, Jan; Kouba, Antonín; Buřič, Miloš (2019-01-01). "Communication, behaviour, and decision making in crayfish: A review". Zoologischer Anzeiger. 278: 28–37. doi:10.1016/j.jcz.2018.10.009. ISSN   0044-5231. S2CID   92105429.
  6. Huber, Robert; Schneider, Rebecca A. Zulandt; Moore, Paul (2001-01-01). "Individual and Status Recognition in the Crayfish, Orconectes Rusticus: The Effects of Urine Release on Fight Dynamics". Behaviour. 138 (2): 137–153. doi:10.1163/15685390151074348. ISSN   0005-7959.
  7. Goulson, Dave (2013-06-13). "REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides". Journal of Applied Ecology. 50 (4): 977–987. Bibcode:2013JApEc..50..977G. doi:10.1111/1365-2664.12111. ISSN   0021-8901. S2CID   267975.
  8. 1 2 Scholl, Lee E.; Sultana, Tamanna; Metcalfe, Chris; Dew, William A. (2022-06-01). "Clothianidin interferes with recognition of a previous encounter in rusty crayfish (Faxonius rusticus) due to a chemosensory impairment". Chemosphere. 296: 133960. Bibcode:2022Chmsp.296m3960S. doi:10.1016/j.chemosphere.2022.133960. ISSN   0045-6535. PMID   35167832. S2CID   246810470.