Cramer's theorem (algebraic curves)

Last updated

In mathematics, Cramer's theorem on algebraic curves gives the necessary and sufficient number of points in the real plane falling on an algebraic curve to uniquely determine the curve in non-degenerate cases. This number is

Mathematics field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Algebraic curve algebraic variety of dimension one

In mathematics, a plane real algebraic curve is the set of points on the Euclidean plane whose coordinates are zeros of some polynomial in two variables. More generally an algebraic curve is similar but may be embedded in a higher dimensional space or defined over some more general field.

Contents

where n is the degree of the curve. The theorem is due to Gabriel Cramer, who published it in 1750. [1]

The degree of a polynomial is the highest degree of its monomials with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. The term order has been used as a synonym of degree but, nowadays, may refer to several other concepts . For example, the polynomial which can also be expressed as has three terms. The first term has a degree of 5, the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term.

Gabriel Cramer Genevan mathematician

Gabriel Cramer was a Genevan mathematician. He was the son of physician Jean Cramer and Anne Mallet Cramer.

For example, a line (of degree 1) is determined by 2 distinct points on it: one and only one line goes through those two points. Likewise, a non-degenerate conic (polynomial equation in x and y with the sum of their powers in any term not exceeding 2, hence with degree 2) is uniquely determined by 5 points in general position (no three of which are on a straight line).

In geometry, a degenerate conic is a conic that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers as the product of two linear polynomials.

In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the general case situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings.

The intuition of the conic case is this: Suppose the given points fall on, specifically, an ellipse. Then five pieces of information are necessary and sufficient to identify the ellipsethe horizontal location of the ellipse's center, the vertical location of the center, the major axis (the length of the longest chord), the minor axis (the length of the shortest chord through the center, perpendicular to the major axis), and the ellipse's rotational orientation (the extent to which the major axis departs from the horizontal). Five points in general position suffice to provide these five pieces of information, while four points do not.

Ellipse type of curve on a plane

In mathematics, an ellipse is a curve in a plane surrounding two focal points such that the sum of the distances to the two focal points is constant for every point on the curve. As such, it is a generalization of a circle, which is a special type of an ellipse having both focal points at the same location. The elongation of an ellipse is represented by its eccentricity, which for an ellipse can be any number from 0 to arbitrarily close to but less than 1.

Chord (geometry) geometric line segment whose endpoints both lie on the circle

A chord of a circle is a straight line segment whose endpoints both lie on the circle. A secant line, or just secant, is the infinite line extension of a chord. More generally, a chord is a line segment joining two points on any curve, for instance an ellipse. A chord that passes through a circle's center point is the circle's diameter. Every diameter is a chord, but not every chord is a diameter.

Perpendicular property of being perpendicular (perpendicularity) is the relationship between two lines which meet at a right angle (90 degrees). The property extends to other related geometric objects

In elementary geometry, the property of being perpendicular (perpendicularity) is the relationship between two lines which meet at a right angle. The property extends to other related geometric objects.

Derivation of the formula

The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2. This is because the n-th degree terms are numbering n + 1 in total; the (n  1) degree terms are numbering n in total; and so on through the first degree terms and numbering 2 in total, and the single zero degree term (the constant). The sum of these is (n + 1) + n + (n  1) + ... + 2 + 1 = (n + 1)(n + 2) / 2 terms, each with its own coefficient. However, one of these coefficients is redundant in determining the curve, because we can always divide through the polynomial equation by any one of the coefficients, giving an equivalent equation with one coefficient fixed at 1, and thus [(n + 1)(n + 2) / 2]  1 = n(n + 3) / 2 remaining coefficients.

In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or any expression; it is usually a number, but may be any expression. In the latter case, the variables appearing in the coefficients are often called parameters, and must be clearly distinguished from the other variables.

For example, a fourth degree equation has the general form

with 4(4+3)/2 = 14 coefficients.

Determining an algebraic curve through a set of points consists of determining values for these coefficients in the algebraic equation such that each of the points satisfies the equation. Given n(n + 3) / 2 points (xi, yi), each of these points can be used to create a separate equation by substituting it into the general polynomial equation of degree n, giving n(n + 3) / 2 equations linear in the n(n + 3) / 2 unknown coefficients. If this system is non-degenerate in the sense of having a non-zero determinant, the unknown coefficients are uniquely determined and hence the polynomial equation and its curve are uniquely determined. More than this number of points would be redundant, and fewer would be insufficient to solve the system of equations uniquely for the coefficients.

Degenerate cases

An example of a degenerate case, in which n(n + 3) / 2 points on the curve are not sufficient to determine the curve uniquely, was provided by Cramer as part of Cramer's paradox. Let the degree be n = 3, and let nine points be all combinations of x = –1, 0, 1 and y = –1, 0, 1. More than one cubic contains all of these points, namely all cubics of equation Thus these points do not determine a unique cubic, even though there are n(n + 3) / 2 = 9 of them. More generally, there are infinitely many cubics that pass through the nine intersection points of two cubics (Bézout's theorem implies that two cubics have, in general, nine intersection points)

Likewise, for the conic case of n = 2, if three of five given points all fall on the same straight line, they may not uniquely determine the curve.

Restricted cases

If the curve is required to be in a particular sub-category of n-th degree polynomial equations, then fewer than n(n + 3) / 2 points may be necessary and sufficient to determine a unique curve. For example, the generic circle is given by the equation where the center is located at (a, b) and the radius is r. Equivalently, by expanding the squared terms, the generic equation is where Two restrictions have been imposed here compared to the general conic case of n = 2: the coefficient of the term in xy is restricted to equal 0, and the coefficient of y2 is restricted to equal the coefficient of x2. Thus instead of five points being needed, only 5  2 = 3 are needed, coinciding with the 3 parameters a, b, k (equivalently a, b, r) that need to be identified.

See also

Related Research Articles

Analytic geometry study of geometry using a coordinate system

In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

In mathematics, an equation is a statement that asserts the equality of two expressions. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English any equality is an equation.

Polynomial mathematical expression consisting of variables and coefficients

In mathematics, a polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables. An example of a polynomial of a single indeterminate, x, is x2 − 4x + 7. An example in three variables is x3 + 2xyz2yz + 1.

In algebra, the discriminant of a polynomial is a polynomial function of its coefficients, which allows deducing some properties of the roots without computing them. For example, the discriminant of the quadratic polynomial is which is zero if and only if the polynomial has a double root, and is positive if and only if the polynomial has two real roots.

Quadratic function polynomial function in which the highest-degree term is of the second degree

In algebra, a quadratic function, a quadratic polynomial, a polynomial of degree 2, or simply a quadratic, is a polynomial function with one or more variables in which the highest-degree term is of the second degree. For example, a quadratic function in three variables x, y, and z contains exclusively terms x2, y2, z2, xy, xz, yz, x, y, z, and a constant:

In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.

In mathematics, an algebraic equation or polynomial equation is an equation of the form

In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:

Linear system of divisors

In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.

In mathematics, the Veronese surface is an algebraic surface in five-dimensional projective space, and is realized by the Veronese embedding, the embedding of the projective plane given by the complete linear system of conics. It is named after Giuseppe Veronese (1854–1917). Its generalization to higher dimension is known as the Veronese variety.

Cayley–Bacharach theorem

In mathematics, the Cayley–Bacharach theorem is a statement about cubic curves in the projective plane P2. The original form states:

Dual curve

In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual, sending each point to the point dual to its tangent line. If C is algebraic then so is its dual and the degree of the dual is known as the class of the original curve. The equation of the dual of C, given in line coordinates, is known as the tangential equation of C.

A quartic plane curve is a plane algebraic curve of the fourth degree. It can be defined by a bivariate quartic equation:

Polar curve

In algebraic geometry, the first polar, or simply polar of an algebraic plane curve C of degree n with respect to a point Q is an algebraic curve of degree n−1 which contains every point of C whose tangent line passes through Q. It is used to investigate the relationship between the curve and its dual, for example in the derivation of the Plücker formulas.

Conic section curve obtained as the intersection of a cone with a plane; are formed by cross-sections of a cone at various different angles

In mathematics, a conic section is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse. The circle is a special case of the ellipse, and is of sufficient interest in its own right that it was sometimes called a fourth type of conic section. The conic sections have been studied by the ancient Greek mathematicians with this work culminating around 200 BC, when Apollonius of Perga undertook a systematic study of their properties.

Cramers paradox

In mathematics, Cramer's paradox or the Cramer–Euler paradox is the statement that the number of points of intersection of two higher-order curves in the plane can be greater than the number of arbitrary points that are usually needed to define one such curve. It is named after the Genevan mathematician Gabriel Cramer.

In Euclidean and projective geometry, just as two (distinct) points determine a line, five points determine a conic. There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.

References