Cramer's theorem (algebraic curves)

Last updated

In algebraic geometry, Cramer's theorem on algebraic curves gives the necessary and sufficient number of points in the real plane falling on an algebraic curve to uniquely determine the curve in non-degenerate cases. This number is

Contents

where n is the degree of the curve. The theorem is due to Gabriel Cramer, who published it in 1750. [1]

For example, a line (of degree 1) is determined by 2 distinct points on it: one and only one line goes through those two points. Likewise, a non-degenerate conic (polynomial equation in x and y with the sum of their powers in any term not exceeding 2, hence with degree 2) is uniquely determined by 5 points in general position (no three of which are on a straight line).

The intuition of the conic case is this: Suppose the given points fall on, specifically, an ellipse. Then five pieces of information are necessary and sufficient to identify the ellipsethe horizontal location of the ellipse's center, the vertical location of the center, the major axis (the length of the longest chord), the minor axis (the length of the shortest chord through the center, perpendicular to the major axis), and the ellipse's rotational orientation (the extent to which the major axis departs from the horizontal). Five points in general position suffice to provide these five pieces of information, while four points do not.

Derivation of the formula

The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2. This is because the n-th degree terms are numbering n + 1 in total; the (n  1) degree terms are numbering n in total; and so on through the first degree terms and numbering 2 in total, and the single zero degree term (the constant). The sum of these is (n + 1) + n + (n  1) + ... + 2 + 1 = (n + 1)(n + 2) / 2 terms, each with its own coefficient. However, one of these coefficients is redundant in determining the curve, because we can always divide through the polynomial equation by any one of the coefficients, giving an equivalent equation with one coefficient fixed at 1, and thus [(n + 1)(n + 2) / 2]  1 = n(n + 3) / 2 remaining coefficients.

For example, a fourth degree equation has the general form

with 4(4+3)/2 = 14 coefficients.

Determining an algebraic curve through a set of points consists of determining values for these coefficients in the algebraic equation such that each of the points satisfies the equation. Given n(n + 3) / 2 points (xi, yi), each of these points can be used to create a separate equation by substituting it into the general polynomial equation of degree n, giving n(n + 3) / 2 equations linear in the n(n + 3) / 2 unknown coefficients. If this system is non-degenerate in the sense of having a non-zero determinant, the unknown coefficients are uniquely determined and hence the polynomial equation and its curve are uniquely determined. More than this number of points would be redundant, and fewer would be insufficient to solve the system of equations uniquely for the coefficients.

Degenerate cases

An example of a degenerate case, in which n(n + 3) / 2 points on the curve are not sufficient to determine the curve uniquely, was provided by Cramer as part of Cramer's paradox. Let the degree be n = 3, and let nine points be all combinations of x = −1, 0, 1 and y = −1, 0, 1. More than one cubic contains all of these points, namely all cubics of equation Thus these points do not determine a unique cubic, even though there are n(n + 3) / 2 = 9 of them. More generally, there are infinitely many cubics that pass through the nine intersection points of two cubics (Bézout's theorem implies that two cubics have, in general, nine intersection points)

Likewise, for the conic case of n = 2, if three of five given points all fall on the same straight line, they may not uniquely determine the curve.

Restricted cases

If the curve is required to be in a particular sub-category of n-th degree polynomial equations, then fewer than n(n + 3) / 2 points may be necessary and sufficient to determine a unique curve. For example, three (non-collinear) points determine a circle: the generic circle is given by the equation where the center is located at (a, b) and the radius is r. Equivalently, by expanding the squared terms, the generic equation is where Two restrictions have been imposed here compared to the general conic case of n = 2: the coefficient of the term in xy is restricted to equal 0, and the coefficient of y2 is restricted to equal the coefficient of x2. Thus instead of five points being needed, only 5  2 = 3 are needed, coinciding with the 3 parameters a, b, k (equivalently a, b, r) that need to be identified.

See also

Related Research Articles

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.

Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. It is named after Étienne Bézout.

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the general case situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings.

<span class="mw-page-title-main">Degenerate conic</span> 2nd-degree plane curve which is reducible

In geometry, a degenerate conic is a conic that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers as the product of two linear polynomials.

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and

In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:

<span class="mw-page-title-main">Focus (geometry)</span> Geometric point from which certain types of curves are constructed

In geometry, focuses or foci are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.

In mathematics, the Veronese surface is an algebraic surface in five-dimensional projective space, and is realized by the Veronese embedding, the embedding of the projective plane given by the complete linear system of conics. It is named after Giuseppe Veronese (1854–1917). Its generalization to higher dimension is known as the Veronese variety.

<span class="mw-page-title-main">Cayley–Bacharach theorem</span> Statement about cubic curves in the projective plane

In mathematics, the Cayley–Bacharach theorem is a statement about cubic curves in the projective plane P2. The original form states:

<span class="mw-page-title-main">Dual curve</span> Curve in the dual projective plane made from all lines tangent to a given curve

In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual, sending each point to the point dual to its tangent line. If C is algebraic then so is its dual and the degree of the dual is known as the class of the original curve. The equation of the dual of C, given in line coordinates, is known as the tangential equation of C. Duality is an involution: the dual of the dual of C is the original curve C.

<span class="mw-page-title-main">Polar curve</span>

In algebraic geometry, the first polar, or simply polar of an algebraic plane curve C of degree n with respect to a point Q is an algebraic curve of degree n−1 which contains every point of C whose tangent line passes through Q. It is used to investigate the relationship between the curve and its dual, for example in the derivation of the Plücker formulas.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Cramer's paradox</span> Mathematical paradox

In mathematics, Cramer's paradox or the Cramer–Euler paradox is the statement that the number of points of intersection of two higher-order curves in the plane can be greater than the number of arbitrary points that are usually needed to define one such curve. It is named after the Genevan mathematician Gabriel Cramer.

In Euclidean and projective geometry, five points determine a conic, just as two (distinct) points determine a line. There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.

References