Criegee intermediate

Last updated
Criegee zwitterion Carbonyl oxide (Criegee zwitterion).svg
Criegee zwitterion

A Criegee intermediate (also called a Criegee zwitterion or Criegee biradical ) is a carbonyl oxide with two charge centers. These chemicals may react with sulfur dioxide and nitrogen oxides in the Earth's atmosphere, and are implicated in the formation of aerosols, which are an important factor in controlling global climate. [1] [2] Criegee intermediates are also an important source of OH (hydroxyl radicals). [3] OH radicals are the most important oxidant in the troposphere, [4] and are important in controlling air quality and pollution.

Contents

The formation of this sort of structure was first postulated in the 1950s by Rudolf Criegee, [5] for whom it is named. It was not until 2012 that direct detection of such chemicals was reported. [6] Infrared spectroscopy suggests the electronic structure has a substantially zwitterionic character rather than the biradical character that had previously been proposed. [7]

Formation

Ozone reacts with an alkene to form a carbonyl and a carbonyl oxide, known as a Criegee intermediate. Ozonolysis CarbonylOxide Formation.svg
Ozone reacts with an alkene to form a carbonyl and a carbonyl oxide, known as a Criegee intermediate.

Criegee intermediates are formed by the gas-phase reactions of alkenes and ozone in the Earth's atmosphere. Ozone adds across the carbon–carbon double bond of the alkene to form a molozonide, which then decomposes to produce a carbonyl (RR'CO) and a carbonyl oxide. The latter is known as the Criegee intermediate. [8]

The alkene ozonolysis reaction is extremely exothermic, releasing about 50 kilocalories per mole (210 kJ/mol) of excess energy. Therefore, the Criegee intermediates are formed with a large amount of internal energy. [8]

Removal

When Criegee intermediates are formed, some portion of them will undergo prompt unimolecular decay, producing OH radicals and other products. However, they may instead become stabilized by interactions with other molecules or react with other chemicals to give different products.

Criegee intermediates may be collisionally stabilized via collisions with other molecules in the atmosphere. These stabilized Criegee intermediates may then undergo thermal unimolecular decay to OH radicals and other products, or may undergo bimolecular reactions with other atmospheric species.

In the ozonolysis reaction sequence, the Criegee intermediate reacts with another carbonyl compound (generally the aldehyde or ketone byproduct of the Criegee-intermediate formation reaction itself) to form an ozonide (1,2,4-trioxolane).

Related Research Articles

<span class="mw-page-title-main">Carbon monoxide</span> Colourless, odourless, tasteless and toxic gas

Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Ground-level ozone</span> Constituent gas of the troposphere

Ground-level ozone (O3), also known as surface-level ozone and tropospheric ozone, is a trace gas in the troposphere (the lowest level of the Earth's atmosphere), with an average concentration of 20–30 parts per billion by volume (ppbv), with close to 100 ppbv in polluted areas. Ozone is also an important constituent of the stratosphere, where the ozone layer (2 to 8 parts per million ozone) exists which is located between 10 and 50 kilometers above the Earth's surface. The troposphere extends from the ground up to a variable height of approximately 14 kilometers above sea level. Ozone is least concentrated in the ground layer (or planetary boundary layer) of the troposphere. Ground-level or tropospheric ozone is created by chemical reactions between NOx gases (oxides of nitrogen produced by combustion) and volatile organic compounds (VOCs). The combination of these chemicals in the presence of sunlight form ozone. Its concentration increases as height above sea level increases, with a maximum concentration at the tropopause. About 90% of total ozone in the atmosphere is in the stratosphere, and 10% is in the troposphere. Although tropospheric ozone is less concentrated than stratospheric ozone, it is of concern because of its health effects. Ozone in the troposphere is considered a greenhouse gas, and as such contribute to global warming. as reported in IPCC reports. Actually, tropospheric ozone is considered the third most important greenhouse gas after CO2 and CH4, as indicated by estimates of its radiative forcing.

In organic chemistry, Markovnikov's rule or Markownikoff's rule describes the outcome of some addition reactions. The rule was formulated by Russian chemist Vladimir Markovnikov in 1870.

<span class="mw-page-title-main">Allyl group</span> Chemical group (–CH₂–CH=CH₂)

In organic chemistry, an allyl group is a substituent with the structural formula −CH2−HC=CH2. It consists of a methylene bridge attached to a vinyl group. The name is derived from the scientific name for garlic, Allium sativum. In 1844, Theodor Wertheim isolated an allyl derivative from garlic oil and named it "Schwefelallyl". The term allyl applies to many compounds related to H2C=CH−CH2, some of which are of practical or of everyday importance, for example, allyl chloride.

The 1,3-dipolar cycloaddition is a chemical reaction between a 1,3-dipole and a dipolarophile to form a five-membered ring. The earliest 1,3-dipolar cycloadditions were described in the late 19th century to the early 20th century, following the discovery of 1,3-dipoles. Mechanistic investigation and synthetic application were established in the 1960s, primarily through the work of Rolf Huisgen. Hence, the reaction is sometimes referred to as the Huisgen cycloaddition. 1,3-dipolar cycloaddition is an important route to the regio- and stereoselective synthesis of five-membered heterocycles and their ring-opened acyclic derivatives. The dipolarophile is typically an alkene or alkyne, but can be other pi systems. When the dipolarophile is an alkyne, aromatic rings are generally produced.

In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.

<span class="mw-page-title-main">Rudolf Criegee</span> German chemist (1902–1975)

Rudolf Criegee was a German organic chemist.

<span class="mw-page-title-main">Organic redox reaction</span> Redox reaction that takes place with organic compounds

Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds. In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. Instead the relevant criterion for organic oxidation is gain of oxygen and/or loss of hydrogen. Simple functional groups can be arranged in order of increasing oxidation state. The oxidation numbers are only an approximation:

<span class="mw-page-title-main">Ozonide</span> Polyatomic ion (O3, charge –1), or cyclic compounds made from ozone and alkenes

Ozonide is the polyatomic anion O−3. Cyclic organic compounds formed by the addition of ozone to an alkene are also called ozonides.

The Baeyer–Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from a cyclic ketone, using peroxyacids or peroxides as the oxidant. The reaction is named after Adolf von Baeyer and Victor Villiger who first reported the reaction in 1899.

<span class="mw-page-title-main">Hydroperoxyl</span> Chemical compound

The hydroperoxyl radical, also known as the hydrogen superoxide, is the protonated form of superoxide with the chemical formula HO2, also written HOO. This species plays an important role in the atmosphere and as a reactive oxygen species in cell biology.

A Norrish reaction, named after Ronald George Wreyford Norrish, is a photochemical reaction taking place with ketones and aldehydes. Such reactions are subdivided into Norrish type I reactions and Norrish type II reactions. While of limited synthetic utility these reactions are important in the photo-oxidation of polymers such as polyolefins, polyesters, certain polycarbonates and polyketones.

In chemistry, a reaction intermediate, or intermediate, is a molecular entity arising within the sequence of a stepwise chemical reaction. It is formed as the reaction product of an elementary step, from the reactants and/or preceding intermediates, but is consumed in a later step. It does not appear in the chemical equation for the overall reaction.

<span class="mw-page-title-main">Dioxirane</span> Chemical compound

In chemistry, dioxirane is an organic compound with formula CH
2
O
2
. The molecule consists of a ring with one methylene and two oxygen atoms. It is of interest as the smallest cyclic organic peroxide, but otherwise it is of little practical value.

<span class="mw-page-title-main">Marsha I. Lester</span> American physicist

Marsha Isack Lester is an American physical chemist. She is currently the Edmund J. Kahn Distinguished Professor of Chemistry at the University of Pennsylvania. Lester uses both theoretical and experimental methods to study the physical chemistry of volatile organic compounds present in the Earth's atmosphere. Her current work focuses on the hydroxyl radical and Criegee intermediates.

<span class="mw-page-title-main">Alkenyl peroxides</span> Organic compounds of the form R2C=C(R)OOR

In organic chemistry, alkenyl peroxides are organic peroxides bearing an alkene residue directly at the peroxide group, resulting in the general formula R2C=C(R)OOR. They have very weak O-O bonds and are thus generally unstable compounds.

The Criegee oxidation is a glycol cleavage reaction in which vicinal diols are oxidized to form ketones and aldehydes using lead tetraacetate. It is analogous to the use of periodate but uses a milder oxidant. This oxidation was discovered by Rudolf Criegee and coworkers and first reported in 1931 using ethylene glycol as the substrate.

The Griesbaum coozonolysis is a name reaction in organic chemistry that allows for the preparation of tetrasubstituted ozonides (1,2,4-trioxolanes) by the reaction of O-methyl oximes with a carbonyl compound in the presence of ozone. Contrary to their usual roles as intermediates in ozonolysis and other oxidative alkene cleavage reactions, 1,2,4-trioxolanes are relatively stable compounds and are isolable.

References

  1. Welz, Oliver; Savee, John D.; Osborn, David L.; Vasu, Subith S.; Percival, Carl J.; Shallcross, Dudley E.; Taatjes, Craig A. (13 January 2012). "Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of C2I with O2". Science. 335 (6065): 204–207. Bibcode:2012Sci...335..204W. doi:10.1126/science.1213229. PMID   22246773. S2CID   26810853.
  2. Castro, Joseph (January 12, 2012). "How mysterious molecules may help cool Earth". NBC News . Retrieved 2012-01-12.
  3. Heard, Dwayne E.; Whalley, Lisa K.; Stone, Daniel (2012). "Tropospheric OH and HO2 radicals: field measurements and model comparisons". Chemical Society Reviews. 41 (19): 6348–6404. doi: 10.1039/C2CS35140D . PMID   22907645.
  4. Finlayson-Pitts, Barbara J.; Pitts, James N. (2000). Chemistry of the upper and lower atmosphere : theory, experiments, and applications. San Diego: Academic Press. ISBN   9780080529073. OCLC   162128929.
  5. "Offsetting Global Warming: Molecule in Earth's Atmosphere Could 'Cool the Planet'". Science Daily. January 12, 2012. Retrieved 2012-01-14.
  6. Taatjes, Craig A.; Shallcross, Dudley E.; Percival, Carl J.; Vasu, Subith S.; Osborn, David L.; Savee, John D.; Welz, Oliver (2012-01-13). "Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I with O2". Science. 335 (6065): 204–207. Bibcode:2012Sci...335..204W. doi:10.1126/science.1213229. ISSN   1095-9203. PMID   22246773. S2CID   26810853.
  7. Su, Yu-Te; Huang, Yu-Hsuan; Witek, Henryk A.; Lee, Yuan-Pern (12 April 2013). "Infrared Absorption Spectrum of the Simplest Criegee Intermediate CH2OO". Science. 340 (6129): 174–176. Bibcode:2013Sci...340..174S. doi:10.1126/science.1234369. PMID   23580523. S2CID   31499893.
  8. 1 2 Marston, George; Johnson, David (2008-03-25). "The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere". Chemical Society Reviews. 37 (4): 699–716. doi:10.1039/B704260B. ISSN   1460-4744. PMID   18362978.