Criegee intermediate

Last updated
Criegee zwitterion Carbonyl oxide (Criegee zwitterion).svg
Criegee zwitterion

A Criegee intermediate (also called a Criegee zwitterion or Criegee biradical ) is a carbonyl oxide with two charge centers. These chemicals may react with sulfur dioxide and nitrogen oxides in the Earth's atmosphere, and are implicated in the formation of aerosols, which are an important factor in controlling global climate. [1] [2] Criegee intermediates are also an important source of OH (hydroxyl radicals). [3] OH radicals are the most important oxidant in the troposphere, [4] and are important in controlling air quality and pollution.

Contents

The formation of this sort of structure was first postulated in the 1950s by Rudolf Criegee, [5] for whom it is named. It was not until 2012 that direct detection of such chemicals was reported. [6] Infrared spectroscopy suggests the electronic structure has a substantially zwitterionic character rather than the biradical character that had previously been proposed. [7]

Formation

Ozone reacts with an alkene to form a carbonyl and a carbonyl oxide, known as a Criegee intermediate. Ozonolysis CarbonylOxide Formation.svg
Ozone reacts with an alkene to form a carbonyl and a carbonyl oxide, known as a Criegee intermediate.

Criegee intermediates are formed by the gas-phase reactions of alkenes and ozone in the Earth's atmosphere. Ozone adds across the carbon–carbon double bond of the alkene to form a molozonide, which then decomposes to produce a carbonyl (RR'CO) and a carbonyl oxide. The latter is known as the Criegee intermediate. [8]

The alkene ozonolysis reaction is extremely exothermic, releasing about 50 kilocalories per mole (210 kJ/mol) of excess energy. Therefore, the Criegee intermediates are formed with a large amount of internal energy. [8]

Removal

When Criegee intermediates are formed, some portion of them will undergo prompt unimolecular decay, producing OH radicals and other products. However, they may instead become stabilized by interactions with other molecules or react with other chemicals to give different products.

Criegee intermediates may be collisionally stabilized via collisions with other molecules in the atmosphere. These stabilized Criegee intermediates may then undergo thermal unimolecular decay to OH radicals and other products, or may undergo bimolecular reactions with other atmospheric species.

In the ozonolysis reaction sequence, the Criegee intermediate reacts with another carbonyl compound (generally the aldehyde or ketone byproduct of the Criegee-intermediate formation reaction itself) to form an ozonide (1,2,4-trioxolane).

Related Research Articles

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is R−COOH or R−CO2H, with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Ground-level ozone</span> Constituent gas of the troposphere

Ground-level ozone (O3), also known as surface-level ozone and tropospheric ozone, is a trace gas in the troposphere (the lowest level of the Earth's atmosphere), with an average concentration of 20–30 parts per billion by volume (ppbv), with close to 100 ppbv in polluted areas. Ozone is also an important constituent of the stratosphere, where the ozone layer (2 to 8 parts per million ozone) exists which is located between 10 and 50 kilometers above the Earth's surface. The troposphere extends from the ground up to a variable height of approximately 14 kilometers above sea level. Ozone is least concentrated in the ground layer (or planetary boundary layer) of the troposphere. Ground-level or tropospheric ozone is created by chemical reactions between NOx gases (oxides of nitrogen produced by combustion) and volatile organic compounds (VOCs). The combination of these chemicals in the presence of sunlight form ozone. Its concentration increases as height above sea level increases, with a maximum concentration at the tropopause. About 90% of total ozone in the atmosphere is in the stratosphere, and 10% is in the troposphere. Although tropospheric ozone is less concentrated than stratospheric ozone, it is of concern because of its health effects. Ozone in the troposphere is considered a greenhouse gas, and may contribute to global warming.

In organic chemistry, Markovnikov's rule or Markownikoff's rule describes the outcome of some addition reactions. The rule was formulated by Russian chemist Vladimir Markovnikov in 1870.

The 1,3-dipolar cycloaddition is a chemical reaction between a 1,3-dipole and a dipolarophile to form a five-membered ring. The earliest 1,3-dipolar cycloadditions were described in the late 19th century to the early 20th century, following the discovery of 1,3-dipoles. Mechanistic investigation and synthetic application were established in the 1960s, primarily through the work of Rolf Huisgen. Hence, the reaction is sometimes referred to as the Huisgen cycloaddition. 1,3-dipolar cycloaddition is an important route to the regio- and stereoselective synthesis of five-membered heterocycles and their ring-opened acyclic derivatives. The dipolarophile is typically an alkene or alkyne, but can be other pi systems. When the dipolarophile is an alkyne, aromatic rings are generally produced.

In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.

The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide called a Wittig reagent. Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes. Most often, the Wittig reaction is used to introduce a methylene group using methylenetriphenylphosphorane (Ph3P=CH2). Using this reagent, even a sterically hindered ketone such as camphor can be converted to its methylene derivative.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

<span class="mw-page-title-main">Rudolf Criegee</span> German chemist

Rudolf Criegee was a German organic chemist.

<span class="mw-page-title-main">Organic redox reaction</span> Redox reaction that takes place with organic compounds

Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds. In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. Instead the relevant criterion for organic oxidation is gain of oxygen and/or loss of hydrogen.

<span class="mw-page-title-main">Ozonide</span> Polyatomic ion (O3, charge –1), or cyclic compounds made from ozone and alkenes

Ozonide is the polyatomic anion O−3. Cyclic organic compounds formed by the addition of ozone to an alkene are also called ozonides.

<span class="mw-page-title-main">Baeyer–Villiger oxidation</span> Organic reaction

The Baeyer–Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from a cyclic ketone, using peroxyacids or peroxides as the oxidant. The reaction is named after Adolf von Baeyer and Victor Villiger who first reported the reaction in 1899.

<span class="mw-page-title-main">Hydroperoxyl</span> Chemical compound

The hydroperoxyl radical, also known as the hydrogen superoxide, is the protonated form of superoxide with the chemical formula HO2, also written HOO. This species plays an important role in the atmosphere and as a reactive oxygen species in cell biology.

The E1cB elimination reaction is a type of elimination reaction which occurs under basic conditions, where the hydrogen to be removed is relatively acidic, while the leaving group is a relatively poor one. Usually a moderate to strong base is present. E1cB is a two-step process, the first step of which may or may not be reversible. First, a base abstracts the relatively acidic proton to generate a stabilized anion. The lone pair of electrons on the anion then moves to the neighboring atom, thus expelling the leaving group and forming double or triple bond. The name of the mechanism - E1cB - stands for Elimination Unimolecular conjugate Base. Elimination refers to the fact that the mechanism is an elimination reaction and will lose two substituents. Unimolecular refers to the fact that the rate-determining step of this reaction only involves one molecular entity. Finally, conjugate base refers to the formation of the carbanion intermediate, which is the conjugate base of the starting material.

A Norrish reaction in organic chemistry is a photochemical reaction taking place with ketones and aldehydes. Such reactions are subdivided into Norrish type I reactions and Norrish type II reactions. The reaction is named after Ronald George Wreyford Norrish. While of limited synthetic utility these reactions are important in the photo-oxidation of polymers such as polyolefins, polyesters, certain polycarbonates and polyketones.

<span class="mw-page-title-main">Radical (chemistry)</span> Atom, molecule, or ion that has an unpaired valence electron; typically highly reactive

In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.

<span class="mw-page-title-main">Marsha I. Lester</span> American physicist

Marsha Isack Lester is an American physical chemist. She is currently the Edmund J. Kahn Distinguished Professor of Chemistry at the University of Pennsylvania. Lester uses both theoretical and experimental methods to study the physical chemistry of volatile organic compounds present in the earth's atmosphere. Her current work focuses on the hydroxyl radical and Criegee intermediates.

The Criegee oxidation is a glycol cleavage reaction in which vicinal diols are oxidized to form ketones and aldehydes using lead tetraacetate. It is analogous to the use of periodate but uses a milder oxidant. This oxidation was discovered by Rudolf Criegee and coworkers and first reported in 1931 using ethylene glycol as the substrate.

The Griesbaum coozonolysis is a name reaction in organic chemistry that allows for the preparation of tetrasubstituted ozonides (1,2,4-trioxolanes) by the reaction of O-methyl oximes with a carbonyl compound in the presence of ozone. Contrary to their usual roles as intermediates in ozonolysis and other oxidative alkene cleavage reactions, 1,2,4-trioxolanes are relatively stable compounds and are isolable.

References

  1. Welz, Oliver; Savee, John D.; Osborn, David L.; Vasu, Subith S.; Percival, Carl J.; Shallcross, Dudley E.; Taatjes, Craig A. (13 January 2012). "Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of C2I with O2". Science. 335 (6065): 204–207. Bibcode:2012Sci...335..204W. doi:10.1126/science.1213229. PMID   22246773. S2CID   26810853.
  2. Castro, Joseph (January 12, 2012). "How mysterious molecules may help cool Earth". NBC News . Retrieved 2012-01-12.
  3. Heard, Dwayne E.; Whalley, Lisa K.; Stone, Daniel (2012). "Tropospheric OH and HO2 radicals: field measurements and model comparisons". Chemical Society Reviews. 41 (19): 6348–6404. doi: 10.1039/C2CS35140D . PMID   22907645.
  4. Finlayson-Pitts, Barbara J.; Pitts, James N. (2000). Chemistry of the upper and lower atmosphere : theory, experiments, and applications. San Diego: Academic Press. ISBN   9780080529073. OCLC   162128929.
  5. "Offsetting Global Warming: Molecule in Earth's Atmosphere Could 'Cool the Planet'". Science Daily. January 12, 2012. Retrieved 2012-01-14.
  6. Taatjes, Craig A.; Shallcross, Dudley E.; Percival, Carl J.; Vasu, Subith S.; Osborn, David L.; Savee, John D.; Welz, Oliver (2012-01-13). "Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I with O2". Science. 335 (6065): 204–207. Bibcode:2012Sci...335..204W. doi:10.1126/science.1213229. ISSN   1095-9203. PMID   22246773. S2CID   26810853.
  7. Su, Yu-Te; Huang, Yu-Hsuan; Witek, Henryk A.; Lee, Yuan-Pern (12 April 2013). "Infrared Absorption Spectrum of the Simplest Criegee Intermediate CH2OO". Science. 340 (6129): 174–176. Bibcode:2013Sci...340..174S. doi:10.1126/science.1234369. PMID   23580523. S2CID   31499893.
  8. 1 2 Marston, George; Johnson, David (2008-03-25). "The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere". Chemical Society Reviews. 37 (4): 699–716. doi:10.1039/B704260B. ISSN   1460-4744. PMID   18362978.