Crosswind stabilization

Last updated

Crosswind stabilization (CWS) is a relatively new advanced driver-assistance system in cars and trucks that was first featured in a 2009 Mercedes-Benz S-Class. CWS assists drivers in controlling a vehicle during strong wind conditions such as driving over a bridge or when overtaking a semi-truck. CWS uses yaw rate, lateral acceleration, steering angle, and velocity sensors to determine how much assistance to give the driver in a certain scenario whether it be at different speeds or while turning. [1] Using different components throughout the vehicle like brakes, differentials, and suspension, CWS can implement the readings from force sensors to properly assist the driver in a given situation.

Contents

Origination

Crosswind stabilization was first used by Mercedes-Benz in 2009 in their S class and then later implemented in their Sprinter and Metris vans. Before this technology existed, vans and trucks of similar size had a higher risk of crashing in strong wind conditions as the surface area on the side of the vans and trucks caused the wind to push on the side of the vehicle acting like a sail. This wind can be caused by winds on an open plain, crossing bridges, or a semi-truck or any big vehicle moving at a high speed passing by. This can lead to spinouts and crashes as the driver is forced to grip the wheel tighter which can lead to jerky steering.

How it works

Crosswind stabilization works on the basic principle that an undesirable force (crosswind) is acted upon a force in the opposite direction of equal force. When an undesirable wind is picked up by the vehicle's sensors, the hardware in a car's Electronic Stability Program (ESP) can create an unbalanced torque distribution (uneven amount of force on each axle) at the driven wheels which will counteract the wind. [2]

The uneven torque-distribution can be caused by these ways:

  1. Unevenly braking one side of the car. Doing so would cause the car to turn in the direction of the wheels that are braking. This slight turn will counteract the wind causing the vehicle to move in a straight line.
  2. Applying more power to one set of axles. Applying more power to a set of axles will cause the wheel to rotate at a higher rpm. This is also known as torque vectoring. A wheel with a higher rpm will travel more distance compared to a lower rpm wheel. For example, if a crosswind is coming from the left causing the car to veer right, applying more power to the right axles, will cause the car to rotate left just enough to balance out the wind. [3]

Some advanced systems such as Mercedes' Active Body Control (ABC) suspension, can soften or harden the suspension to provide the same results. [1]

In Volkswagen's CWS, they use steering correction rather than using the differential or brakes to control the vehicle. The force sensors in the vehicle tell the ESP system which direction the wind is coming from and the ESP system adjusts the steering accordingly. This leads to no energy wasted and less tire wear as the differential and brakes are not actively changing the forces coming from the drivetrain.

Components

An example of what a disk brake looks like Brake shoe.jpg
An example of what a disk brake looks like

Brakes

Brakes are used to stop a car. Brakes in some CWS cars are used to help steer the car in the opposite direction of where the wind is coming from. This is called torque vectoring by braking.

Differential

A differential in a car is constructed to drive a set of wheels and allows them to rotate at different speeds. If a car doesn't have a differential, this would make turning difficult and cause greater tire wear. In cars with CWS and ESP, the differential has many sensors and electronics to be able to control the differential using software. This allows for precise axle control which allows the car to be more stable. [4]

ESP System

ESP, also known as Electronic Stability Program controls the vehicle's Antilock Braking System (ABS) and Traction Control System (TCS). The Traction control system works by applying less torque to a set of wheels to prevent burnouts or loss of grip from happening. The ABS system prevents the wheels from locking up while braking which can cause the car to skid in the straight line even if the driver wants to turn. Using these two systems, he ESP system uses a computer to determine when to use the ABS and TCS system to keep the car stable and not out of control. [5] In cars with CWS, CWS uses the ESP system in order to control the car and without ESP, it wouldn't work.

Suspension

A differential Differential gear 001.JPG
A differential

Suspension in the car is mainly used for keeping the car ride smooth while also providing more grip to the wheels while cornering. A softer suspension can cause sway which could lead to less responsive steering and oversteer. However, a softer suspension tends to lead to a smoother more comfortable ride. Stiff suspension minimizes body movement and leads to the wheels having more traction. However, a stiffer suspension can lead to a more unpleasant ride. Relating to CWS, some cars can stiffen or soften the suspension to get more grip on a certain set of tires which leads to a better-controlled car in high wind situations.

Electric Power Steering

Electric power steering (EPS) uses sensors and an electric motor to assist the steering effort. The wheel is connected to a steering wheel position sensor which tells the computer the position of the steering wheel and commands the electric motor accordingly. Using software, EPS allows cars to become self drivable. In CWS, some vehicle's software can control the steering of the vehicle to prevent spin outs or dangerous side-to-side movement to occur.

Force Sensors

Force sensors are used to determine the force of the wind acting on the side of the car. These readings are reported to the CWS system which then adjusts different components like the ones mentioned above to keep the vehicle stable.

Vehicles that have CWS

VehiclesFord TransitMercedes SprinterVolkswagen CrafterMercedes MetrisMercedes GL-ClassMercedes S-Class
Image
2016 Ford Transit 350 2.2 2016 Ford Transit 350 2.2.jpg
2016 Ford Transit 350 2.2
2019 Mercedes-Benz Sprinter 314 CDi 2.1 2019 Mercedes-Benz Sprinter 314 CDi 2.1.jpg
2019 Mercedes-Benz Sprinter 314 CDi 2.1
2016 Volkswagen Crafter 2016 Volkswagen Crafter. Spielvogel.jpg
2016 Volkswagen Crafter
Mercedes Metris Mercedes Metris (24951706446).jpg
Mercedes Metris
2016 Mercedes-Benz GLS 350d (X 166) 4MATIC wagon 2016 Mercedes-Benz GLS 350d (X 166) 4MATIC wagon (2017-02-08) 01.jpg
2016 Mercedes-Benz GLS 350d (X 166) 4MATIC wagon
2019 Mercedes-Benz S-class Mercedes-Benz S 500 (W222) front view.jpg
2019 Mercedes-Benz S-class
MSRP($)$34,510$36,355Unknown—Not available in U.S.$27,180$65,500$94,250

[6]

Effectiveness

A study by the University of Iowa using the National Advanced Driving Simulator ran a test called the "Wind Gust Scenario". In this scenario, 120 drivers were divided evenly between a bigger SUV and a sedan. Of each vehicle, drivers drove with ESC off or ESC on. The test required drivers to drive in their lane and a crosswind would push the drivers into the oncoming lane. According to the results, in vehicles with the crosswind stabilization enabled, only one driver lost control, while in vehicles without it, 50 of the 179 drivers lost control. [7]  This proves that, in strong crosswind situations, having ESP and CWS can prevent up to 30% more crashes.

Related Research Articles

<span class="mw-page-title-main">Anti-lock braking system</span> Safety anti-skid braking system used on aircraft and land vehicles

An anti-lock braking system (ABS) is a safety anti-skid braking system used on aircraft and on land vehicles, such as cars, motorcycles, trucks, and buses. ABS operates by preventing the wheels from locking up during braking, thereby maintaining tractive contact with the road surface and allowing the driver to maintain more control over the vehicle.

<span class="mw-page-title-main">Axle</span> Central shaft for a rotating wheel or gear

An axle or axletree is a central shaft for a rotating wheel or gear. On wheeled vehicles, the axle may be fixed to the wheels, rotating with them, or fixed to the vehicle, with the wheels rotating around the axle. In the former case, bearings or bushings are provided at the mounting points where the axle is supported. In the latter case, a bearing or bushing sits inside a central hole in the wheel to allow the wheel or gear to rotate around the axle. Sometimes, especially on bicycles, the latter type of axle is referred to as a spindle.

<span class="mw-page-title-main">Steering</span> The control of the direction of motion of vehicles and other objects

Steering is the control of the direction of locomotion.

<span class="mw-page-title-main">Electronic stability control</span> Computerized safety automotive technology

Electronic stability control (ESC), also referred to as electronic stability program (ESP) or dynamic stability control (DSC), is a computerized technology that improves a vehicle's stability by detecting and reducing loss of traction (skidding). When ESC detects loss of steering control, it automatically applies the brakes to help steer the vehicle where the driver intends to go. Braking is automatically applied to wheels individually, such as the outer front wheel to counter oversteer, or the inner rear wheel to counter understeer. Some ESC systems also reduce engine power until control is regained. ESC does not improve a vehicle's cornering performance; instead, it helps reduce the chance of the driver losing control of the vehicle.

A traction control system (TCS), is typically a secondary function of the electronic stability control (ESC) on production motor vehicles, designed to prevent loss of traction of the driven road wheels. TCS is activated when throttle input and engine power and torque transfer are mismatched to the road surface conditions.

<span class="mw-page-title-main">Car suspension</span> Suspension system for a vehicle

Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. The design of front and rear suspension of a car may be different.

<span class="mw-page-title-main">Four-wheel drive</span> Type of drivetrain with four driven wheels

Four-wheel drive, also called 4×4 or 4WD, refers to a two-axled vehicle drivetrain capable of providing torque to all of its wheels simultaneously. It may be full-time or on-demand, and is typically linked via a transfer case providing an additional output drive shaft and, in many instances, additional gear ranges.

<span class="mw-page-title-main">Limited-slip differential</span> Differential gearbox that limits the rotational speed difference of output shafts

A limited-slip differential (LSD) is a type of differential gear train that allows its two output shafts to rotate at different speeds but limits the maximum difference between the two shafts. Limited-slip differentials are often known by the generic trademark Positraction, a brand name owned by General Motors and originally used for its Chevrolet branded vehicles.

<span class="mw-page-title-main">Quattro (four-wheel-drive system)</span> Sub-brand by Audi

Quattro is the trademark used by the automotive brand Audi to indicate that all-wheel drive (AWD) technologies or systems are used on specific models of its automobiles.

Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition.

<span class="mw-page-title-main">Locking differential</span> Mechanical component which forces two transaxial wheels to spin together

A locking differential is a mechanical component, commonly used in vehicles, designed to overcome the chief limitation of a standard open differential by essentially "locking" both wheels on an axle together as if on a common shaft. This forces both wheels to turn in unison, regardless of the traction available to either wheel individually.

<span class="mw-page-title-main">Electronic brakeforce distribution</span>

Electronic brakeforce distribution or electronic brakeforce limitation (EBL) is an automobile brake technology that automatically varies the amount of force applied to each of a vehicle's wheels, based on road conditions, speed, loading, etc, thus providing intelligent control of both brake balance and overall brake force. Always coupled with anti-lock braking systems (ABS), EBD can apply more or less braking pressure to each wheel in order to maximize stopping power whilst maintaining vehicular control. Typically, the front end carries more weight and EBD distributes less braking pressure to the rear brakes so the rear brakes do not lock up and cause a skid. In some systems, EBD distributes more braking pressure at the rear brakes during initial brake application before the effects of weight transfer become apparent.

Dynamic steering response (DSR) is a vehicle safety and advanced power steering system that can counteract unstable or difficult steering that may be caused by external forces such as strong crosswinds or uneven roads by giving proper steering assistance from the steering gear. DSR assists the driver by determining the correct steering ratio in a vehicle's power steering system to provide steering corrections to stabilize vehicles and increase safety. The system determines the steering ratio(the amount of turning of the steering wheel to the amount of turning of the vehicle’s wheels) based on factors such as current road conditions and vehicle speed. This system works by having an electric motor attached to the steering gear of a vehicle reducing or increasing the torque needed to steer based on the situation. Thus, less physical input from the driver is required creating a more comfortable driving experience overall.

Torque steer is the unintended influence of engine torque on the steering, especially in front-wheel-drive vehicles. For example, during heavy acceleration, the steering may pull to one side, which may be disturbing to the driver. The effect is manifested either as a tugging sensation in the steering wheel, or a veering of the vehicle from the intended path. Torque steer is directly related to differences in the forces in the contact patches of the left and right drive wheels. The effect becomes more evident when high torques are applied to the drive wheels because of a high overall reduction ratio between the engine and wheels, high engine torque, or some combination of the two. Torque steer is distinct from steering kickback.

<span class="mw-page-title-main">Beam axle</span> Automobile mechanism

A beam axle, rigid axle or solid axle is a dependent suspension design in which a set of wheels is connected laterally by a single beam or shaft. Beam axles were once commonly used at the rear wheels of a vehicle, but historically they have also been used as front axles in four-wheel-drive vehicles. In most automobiles, beam axles have been replaced with front and rear independent suspensions.

Cornering Brake Control (CBC) is an automotive safety measure that improves handling performance by distributing the force applied on the wheels of a vehicle while turning corners. Introduced by BMW in 1992, the technology is now featured in modern electric and gasoline vehicles such as cars, motorcycles, and trucks. CBC is often included under the Electronic Stability Control (ESC) safety feature provided by vehicle manufacturers.

ControlTrac four-wheel drive is the brand name of a selectable automatic full-time four-wheel drive system offered by Ford Motor Company. The four-wheel drive system was designed and developed at BorgWarner under its TorqTransfer Systems division in the mid 1980s. BorgWarner calls the system Torque-On-Demand (TOD). ControlTrac was the first automatic system to use software control and no planetary or bevel geared center differential. Instead of a planetary or bevel geared center differential, the system uses a variable intelligent locking center multi-disc differential.

S-AWC is the brand name of an advanced full-time four-wheel drive system developed by Mitsubishi Motors. The technology, specifically developed for the new 2007 Lancer Evolution, the 2010 Outlander, the 2014 Outlander, the Outlander PHEV and the Eclipse Cross have an advanced version of Mitsubishi's AWC system. Mitsubishi Motors first exhibited S-AWC integration control technology in the Concept-X model at the 39th Tokyo Motor Show in 2005. According to Mitsubishi, "the ultimate embodiment of the company's AWC philosophy is the S-AWC system, a 4WD-based integrated vehicle dynamics control system".

All Wheel Control (AWC) is the brand name of a four-wheel drive (4WD) system developed by Mitsubishi Motors. The system was first incorporated in the 2001 Lancer Evolution VII. Subsequent developments have led to S-AWC (Super All Wheel Control), developed specifically for the new 2007 Lancer Evolution. The system is referred by the company as its unique 4-wheel drive technology umbrella, cultivated through its motor sports activities and long history in rallying spanning almost half a century.

Torque vectoring is a technology employed in automobile differentials that has the ability to vary the torque to each half-shaft with an electronic system; or in rail vehicles which achieve the same using individually motored wheels. This method of power transfer has recently become popular in all-wheel drive vehicles. Some newer front-wheel drive vehicles also have a basic torque vectoring differential. As technology in the automotive industry improves, more vehicles are equipped with torque vectoring differentials. This allows for the wheels to grip the road for better launch and handling.

References

  1. 1 2 Hilf, Klaus-Dieter; Matheis, Ingo; Mauss, Jakob; Rauh, Jochen (2010-07-01). "Automated simulation of scenarios to guide the development of a crosswind stabilization function". IFAC Proceedings Volumes. 6th IFAC Symposium on Advances in Automotive Control. 43 (7): 768–772. doi: 10.3182/20100712-3-DE-2013.00195 . ISSN   1474-6670.
  2. Tech, CarBike (2015-05-06). "What is Cross-wind? How Crosswind Assist Works?". CarBikeTech. Retrieved 2020-11-15.
  3. USapplication 2014005892,Bär, Michael&Wegscheider, Michael,"Method for crosswind stabilization of a motor vehicle",published 2014-01-02, assigned to Audi AG , now abandoned.
  4. "What Is The Function Of A Differential In A Car?". Sun Auto Service. 2018-11-20. Retrieved 2020-11-15.
  5. "ESP: Electronic Stability Program – Car Engineer: Learn Automotive Engineering from Auto Engineers". 20 September 2014. Retrieved 2020-11-15.
  6. All images were taken from Wikipedia commons and are copyright free under the creative commons.
  7. Department of Transportation. "Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems; Controls and Displays" (PDF). NHTSA: 327.