Developer(s) | Bernhard Esslinger |
---|---|
Initial release | 1998 |
Stable release | CT 1.4.42 (December 2021) CT 2.1 (release 2024.1) (January 2024) Contents |
Repository | |
Operating system | CT1 and CT2: Microsoft Windows, JCT: Win, Linux and macOS |
Type | Cryptography, Encryption, Privacy, E-Learning |
License | Apache Licence 2.0 |
Website | www |
CrypTool is an open-source project [1] that is a free e-learning software for illustrating cryptographic and cryptanalytic concepts.
The development of CrypTool started in 1998. Originally developed by German companies and universities, it is an open-source project since 2001. [2]
Currently 4 versions of CrypTool are maintained and developed: The CrypTool 1 (CT1) software is available in 6 languages (English, German, Polish, Spanish, Serbian, and French). CrypTool 2 (CT2), JCrypTool (JCT), and CrypTool-Online (CTO) are available in English and German. [3]
The goal of the CrypTool project is to make users aware of how cryptography can help against network security threats and to explain the underlying concepts of cryptology. [4]
CrypTool 1 (CT1) is written in C++ and designed for the Microsoft Windows operating system.
In 2007, development began on two additional projects, both based on a pure-plugin architecture, to serve as successors to the original CrypTool program. Both successors regularly publish new stable versions:
The CrypTool project is now being developed at the research institute CODE at the Bundeswehr University Munich. [9]
CrypTool is used in schools, universities, [10] companies and agencies for education and awareness training. [11] [12] [13] [14]
In early 2020, the CrypTool project decided to merge [15] with a similar project of the same name, CrypTools, founded in 2017 in Australia by Luka Lafaye de Micheaux, Arthur Guiot, and Lucas Gruwez. [16] CrypTool, much older and known, thus completely "absorbs" the project under its name.
The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.
The Data Encryption Standard is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography.
In cryptography, linear cryptanalysis is a general form of cryptanalysis based on finding affine approximations to the action of a cipher. Attacks have been developed for block ciphers and stream ciphers. Linear cryptanalysis is one of the two most widely used attacks on block ciphers; the other being differential cryptanalysis.
Articles related to cryptography include:
The GOST block cipher (Magma), defined in the standard GOST 28147-89, is a Soviet and Russian government standard symmetric key block cipher with a block size of 64 bits. The original standard, published in 1989, did not give the cipher any name, but the most recent revision of the standard, GOST R 34.12-2015, specifies that it may be referred to as Magma. The GOST hash function is based on this cipher. The new standard also specifies a new 128-bit block cipher called Kuznyechik.
In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard.
A5/2 is a stream cipher used to provide voice privacy in the GSM cellular telephone protocol. It was designed in 1992-1993 as a replacement for the relatively stronger A5/1, to allow the GSM standard to be exported to countries "with restrictions on the import of products with cryptographic security features".
In cryptography, SAFER is the name of a family of block ciphers designed primarily by James Massey on behalf of Cylink Corporation. The early SAFER K and SAFER SK designs share the same encryption function, but differ in the number of rounds and the key schedule. More recent versions — SAFER+ and SAFER++ — were submitted as candidates to the AES process and the NESSIE project respectively. All of the algorithms in the SAFER family are unpatented and available for unrestricted use.
In cryptography, Khufu and Khafre are two block ciphers designed by Ralph Merkle in 1989 while working at Xerox's Palo Alto Research Center. Along with Snefru, a cryptographic hash function, the ciphers were named after the Egyptian Pharaohs Khufu, Khafre and Sneferu.
In cryptography, the eXtended Sparse Linearization (XSL) attack is a method of cryptanalysis for block ciphers. The attack was first published in 2002 by researchers Nicolas Courtois and Josef Pieprzyk. It has caused some controversy as it was claimed to have the potential to break the Advanced Encryption Standard (AES) cipher, also known as Rijndael, faster than an exhaustive search. Since AES is already widely used in commerce and government for the transmission of secret information, finding a technique that can shorten the amount of time it takes to retrieve the secret message without having the key could have wide implications.
Kleptography is the study of stealing information securely and subliminally. The term was introduced by Adam Young and Moti Yung in the Proceedings of Advances in Cryptology – Crypto '96. Kleptography is a subfield of cryptovirology and is a natural extension of the theory of subliminal channels that was pioneered by Gus Simmons while at Sandia National Laboratory. A kleptographic backdoor is synonymously referred to as an asymmetric backdoor. Kleptography encompasses secure and covert communications through cryptosystems and cryptographic protocols. This is reminiscent of, but not the same as steganography that studies covert communications through graphics, video, digital audio data, and so forth.
In cryptography, impossible differential cryptanalysis is a form of differential cryptanalysis for block ciphers. While ordinary differential cryptanalysis tracks differences that propagate through the cipher with greater than expected probability, impossible differential cryptanalysis exploits differences that are impossible at some intermediate state of the cipher algorithm.
In cryptography, truncated differential cryptanalysis is a generalization of differential cryptanalysis, an attack against block ciphers. Lars Knudsen developed the technique in 1994. Whereas ordinary differential cryptanalysis analyzes the full difference between two texts, the truncated variant considers differences that are only partially determined. That is, the attack makes predictions of only some of the bits instead of the full block. This technique has been applied to SAFER, IDEA, Skipjack, E2, Twofish, Camellia, CRYPTON, and even the stream cipher Salsa20.
Cryptography, or cryptology, is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications.
The following outline is provided as an overview of and topical guide to cryptography:
This article summarizes publicly known attacks against block ciphers and stream ciphers. Note that there are perhaps attacks that are not publicly known, and not all entries may be up to date.
Crypto++ is a free and open-source C++ class library of cryptographic algorithms and schemes written by Wei Dai. Crypto++ has been widely used in academia, student projects, open-source, and non-commercial projects, as well as businesses. Released in 1995, the library fully supports 32-bit and 64-bit architectures for many major operating systems and platforms, including Android, Apple, BSD, Cygwin, IBM AIX, Linux, MinGW, Solaris, Windows, Windows Phone and Windows RT. The project also supports compilation using C++03, C++11, C++14, and C++17 runtime libraries; and a variety of compilers and IDEs, including Borland Turbo C++, Borland C++ Builder, Clang, CodeWarrior Pro, GCC, Intel C++ Compiler (ICC), Microsoft Visual C/C++, and Sun Studio.
PRESENT is a lightweight block cipher, developed by the Orange Labs (France), Ruhr University Bochum (Germany) and the Technical University of Denmark in 2007. PRESENT was designed by Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. The algorithm is notable for its compact size.
Speck is a family of lightweight block ciphers publicly released by the National Security Agency (NSA) in June 2013. Speck has been optimized for performance in software implementations, while its sister algorithm, Simon, has been optimized for hardware implementations. Speck is an add–rotate–xor (ARX) cipher.
Orr Dunkelman is an Israeli cryptographer and cryptanalyst, currently a professor at the University of Haifa Computer Science department. Dunkelman is a co-director of the Center for Cyber Law & Privacy at the University of Haifa and a co-founder of Privacy Israel, an Israeli NGO for promoting privacy in Israel.