Cryptophycin

Last updated
The common core structure of cryptophycins colored by division into four fragments, two amino and two hydroxycarboxylic acids. Cryptophycin structure.svg
The common core structure of cryptophycins colored by division into four fragments, two amino and two hydroxycarboxylic acids.

Cryptophycins are a family of macrolide molecules that are potent cytotoxins and have been studied for potential antiproliferative properties useful in developing chemotherapy. They are members of the depsipeptide family.

Contents

History

Cryptophycins were originally discovered in 1990 in cyanobacteria of the genus Nostoc . [1] Cryptophycins were patented as antifungal agents with an unknown mechanism of action and subsequently identified as microtubule inhibitors. [2] Closely related molecules were reported in the marine sponge Dysidea arenaria , which were first given the name arenastatins. [3] However, since cyanobacteria are common symbionts of sponges, it has been suggested that bacteria may be the true origin in cases where sponge and bacterial metabolites closely resemble one another. [4] Nevertheless, study of the structure-activity relationships between the two subgroups of molecules led to improved understanding of their cytotoxic effects. [5] :230

Mechanism of action

Cryptophycins are potent microtubule inhibitors, with a mechanism of action similar to that of vinca alkaloids. [2] [6] [7] Treatment of cells with cryptophycins depletes microtubules through interaction with tubulin, thereby preventing cell division. [8] Cryptophycins are capable of inducing apoptosis, [9] possibly through other mechanisms in addition to that mediated by microtubule inhibition. [10]

Clinical studies

Members of the cryptophycin family have been studied as anti-tumor agents. Cryptophycin-52, a synthetic analog of natural product cryptophycins also known as LY355703, [11] reached phase II clinical trials but was withdrawn due to side effects. [12]

Synthesis

Cryptophycins were first isolated from cyanobacteria but have subsequently been produced by chemical synthesis. [13] [14] Chemoenzymatic syntheses have also been reported. [15] [16]

Related Research Articles

<span class="mw-page-title-main">Bryostatin</span> Chemical compound

Bryostatins are a group of macrolide lactones from the marine organism Bugula neritina that were first collected and provided to JL Hartwell’s anticancer drug discovery group at the National Cancer Institute (NCI) by Jack Rudloe. Bryostatins are potent modulators of protein kinase C. They have been studied in clinical trials as anti-cancer agents, as anti-AIDS/HIV agents and in people with Alzheimer's disease.

<span class="mw-page-title-main">Vinblastine</span> Chemical compound; chemotherapy medication

Vinblastine (VBL), sold under the brand name Velban among others, is a chemotherapy medication, typically used with other medications, to treat a number of types of cancer. This includes Hodgkin's lymphoma, non-small cell lung cancer, bladder cancer, brain cancer, melanoma, and testicular cancer. It is given by injection into a vein.

<span class="mw-page-title-main">Podophyllotoxin</span>

Podophyllotoxin (PPT) is the active ingredient in Podofilox, which is a medical cream that is used to treat genital warts and molluscum contagiosum. It is not recommended in HPV infections without external warts. It can be applied either by a healthcare provider or the person themselves.

<span class="mw-page-title-main">Taxane</span> Chemical compound

Taxanes are a class of diterpenes. They were originally identified from plants of the genus Taxus (yews), and feature a taxadiene core. Paclitaxel (Taxol) and docetaxel (Taxotere) are widely used as chemotherapy agents. Cabazitaxel was FDA approved to treat hormone-refractory prostate cancer.

<span class="mw-page-title-main">Tirapazamine</span>

Tirapazamine (SR-[[4233]]) is an experimental anticancer drug that is activated to a toxic radical only at very low levels of oxygen (hypoxia). Such levels are common in human solid tumors, a phenomenon known as tumor hypoxia. Thus, tirapazamine is activated to its toxic form preferentially in the hypoxic areas of solid tumors. Cells in these regions are resistant to killing by radiotherapy and most anticancer drugs. Thus the combination of tirapazamine with conventional anticancer treatments is particularly effective. As of 2006, tirapazamine is undergoing phase III testing in patients with head and neck cancer and gynecological cancer, and similar trials are being undertaken for other solid tumor types.

<span class="mw-page-title-main">Epothilone</span>

Epothilones are a class of potential cancer drugs. Like taxanes, they prevent cancer cells from dividing by interfering with tubulin, but in early trials, epothilones have better efficacy and milder adverse effects than taxanes.

A depsipeptide is a peptide in which one or more of its amide, -C(O)NHR-, groups are replaced by the corresponding ester, -C(O)OR, Many depsipeptides have both peptide and ester linkages. Elimination of the N–H group in a peptide structure results in a decrease of H-bonding capability, which is responsible for secondary structure and folding patterns of peptides, thus inducing structural deformation of the helix and b-sheet structures. Because of decreased resonance delocalization in esters relative to amides, depsipeptides have lower rotational barriers for cis-trans isomerization and therefore they have more flexible structures than their native analogs. They are mainly found in marine and microbial natural products.

<span class="mw-page-title-main">Rhizoxin</span> Chemical compound

Rhizoxin is an antimitotic agent with anti-tumor activity. It is isolated from a pathogenic plant fungus which causes rice seedling blight.

<span class="mw-page-title-main">Eribulin</span>

Eribulin, sold under the brand name Halaven, is an anticancer medication used to treat breast cancer and liposarcoma.

<span class="mw-page-title-main">Romidepsin</span> Chemical compound

Romidepsin, also known as Istodax, is an anticancer agent used in cutaneous T-cell lymphoma (CTCL) and other peripheral T-cell lymphomas (PTCLs). Romidepsin is a natural product obtained from the bacterium Chromobacterium violaceum, and works by blocking enzymes known as histone deacetylases, thus inducing apoptosis. It is sometimes referred to as depsipeptide, after the class of molecules to which it belongs. Romidepsin is branded and owned by Gloucester Pharmaceuticals, now a part of Celgene.

Tubulin inhibitors are chemotherapy drugs that interfere directly with the tubulin system, which is in contrast to those chemotherapy drugs acting on DNA. Microtubules play an important role in eukaryotic cells. Alpha- and beta-tubulin, the main components of microtubules, have gained considerable interest because of their function and biophysical properties and has become the subject of intense study. The addition of tubulin ligands can affect microtubule stability and function, including mitosis, cell motion and intracellular organelle transport. Tubulin binding molecules have generated significant interest after the introduction of the taxanes into clinical oncology and the general use of the vinca alkaloids. These compounds inhibit cell mitosis by binding to the protein tubulin in the mitotic spindle and preventing polymerization or depolymerization into the microtubules. This mode of action is also shared with another natural agent called colchicine.

<span class="mw-page-title-main">Taccalonolide</span>

Taccalonolides are a class of microtubule-stabilizing agents isolated from Tacca chantrieri that has been shown to have selective cancer-fighting properties. Other examples of microtubule-stabilizing agents include taxanes and epothilones, both of which prevent cancer cells from dividing by interfering with tubulin. While taxanes like Paclitaxel and docetaxel have been used successfully against breast, ovarian, prostate, and non–small-cell lung cancers, intrinsic and acquired drug resistance limit their anticancer properties. Unlike taxanes, taccalonolides appear to work through a different mechanism of action that does not involve tubulin, although recently isolated taccalonolides AF and AJ have shown tubulin-interaction activity. The discovery of taccalonolides opens up new possibilities to treat cancer cells, especially ones that are taxane or epithilone resistant.

Cylindrocyclophanes are a class of cyclophane, a group of aromatic hydrocarbons composed of two benzene rings attached in a unique structure. Cylindrocyclophanes were the first cyclophanes found in nature, isolated from a species of cyanobacteria, and have proven to be an interesting group of compounds to study due to their unusual molecular structure and intriguing biological possibilities, especially its cytotoxicity to some cancer cell lines.

<span class="mw-page-title-main">Dideoxyverticillin A</span> Chemical compound

Dideoxyverticillin A, also known as (+)-11,11′-dideoxyverticillin A, is a complex epipolythiodioxopiperazine initially isolated from the marine fungus Penicillium sp. in 1999. It has also been found in the marine fungus Bionectriaceae, and belongs to a class of naturally occurring 2,5-diketopiperazines.

Curacin A is a hybrid polyketide synthase (PKS)/nonribosomal peptide synthase (NRPS) derived natural product produced isolated from the cyanobacterium Lyngbya majuscula. Curacin A belongs to a family of natural products including jamaicamide, mupirocin, and pederin that have an unusual terminal alkene. Additionally, Curacin A contains a notable thiazoline ring and a unique cyclopropyl moiety, which is essential to the compound's biological activity. Curacin A has been characterized as potent antiproliferative cytotoxic compound with notable anticancer activity for several cancer lines including renal, colon, and breast cancer. Curacin A has been shown to interact with colchicine binding sites on tubulin, which inhibits microtubule polymerization, an essential process for cell division and proliferation.

Dysidea arenaria is a species of marine sponge (poriferan) found in the Pacific Ocean. It is a member of the order Dictyoceratida, one of two sponge orders that make up the keratose or "horny" sponges in which a mineral skeleton is absent and a skeleton of organic fibers is present instead.

<span class="mw-page-title-main">Coibamide A</span> Chemical compound

Coibamide A is an antiproliferative depsipeptide which was isolated from a marine Leptolyngbya cyanobacterium. Testing of coibamide A in the National Cancer Institute in vitro 60 human tumor cell line panel (NCI-60) revealed potent anti-proliferative activity and a unique selectivity profile. Similarities between coibamide A- and apratoxin A-induced changes in cell morphology, decreases in VEGFR2 expression and macroautophagy signaling in HUVECs raise the possibility that both cyanobacterial natural products share a common mechanism of action. Wild-type mouse embryonic fibroblasts were more vulnerable to coibamide A than cells lacking autophagy-related protein 5 (Atg5) that suggest coibamide A as a compound with characteristics that may utilize autophagy for pro-death signaling.

<span class="mw-page-title-main">Swinholide</span> Chemical compound

Swinholides are dimeric 42 carbon-ring polyketides that exhibit a 2-fold axis of symmetry. Found mostly in the marine sponge Theonella, swinholides encompass cytotoxic and antifungal activities via disruption of the actin skeleton. Swinholides were first described in 1985 and the structure and stereochemistry were updated in 1989 and 1990, respectively. Thirteen swinholides have been described in the literature, including close structural compounds such as misakinolides/bistheonellides, ankaraholides, and hurgholide A It is suspected that symbiotic microbes that inhabit the sponges rather than the sponges themselves produce swinholides since the highest concentration of swinholides are found in the unicellular bacterial fraction of sponges and not in the sponge fraction or cyanobacteria fraction that also inhabit the sponges.

Valerie J. Paul is the Director of the Smithsonian Marine Station at Fort Pierce, in Fort Pierce, FL since 2002 and the Head Scientist of the Chemical Ecology Program. She is interested in marine chemical ecology, and specializes in researching the ecology and chemistry of Cyanobacteria, blue-green algae, blooms. She has been a fellow of the American Association for the Advancement of Science since 1996, and was the chairperson of the Marine Natural Products Gordon Research Conference in 2000.

Laucysteinamide A (LcA) is a marine natural product isolated from a cyanobacterium, Caldora penicillata.

References

  1. Schwartz, Robert E.; Hirsch, Charles F.; Sesin, David F.; Flor, James E.; Chartrain, Michel; Fromtling, Robert E.; Harris, Guy H.; Salvatore, Michael J.; Liesch, Jerrold M.; Yudin, Katherine (April 1990). "Pharmaceuticals from cultured algae". Journal of Industrial Microbiology. 5 (2–3): 113–123. doi:10.1007/BF01573860. S2CID   34480729.
  2. 1 2 Smith, CD; Zhang, X; Mooberry, SL; Patterson, GM; Moore, RE (15 July 1994). "Cryptophycin: a new antimicrotubule agent active against drug-resistant cells". Cancer Research. 54 (14): 3779–84. PMID   7913408.
  3. KOBAYASHI, Motomasa; KUROSU, Michio; OHYABU, Naoki; WANG, Weiqi; FUJII, Satoshi; KITAGAWA, Isao (1994). "The Absolute Stereostructure of Arenastatin A, a Potent Cytotoxic Depsipeptide from the Okinawan Marine Sponge Dysidea arenaria". Chemical & Pharmaceutical Bulletin. 42 (10): 2196–2198. doi: 10.1248/cpb.42.2196 .
  4. Piel, Jörn (2004-01-01). "Metabolites from symbiotic bacteriaThis review is dedicated to Professor Axel Zeeck on the occasion of his 65th birthday". Natural Product Reports. 21 (4): 519–38. doi:10.1039/b310175b. PMID   15282634.
  5. Cragg, edited by Gordon M.; Kingston, David G.I.; Newman, David J. (2012). Anticancer agents from natural products (2nd ed.). Boca Raton, FL: CRC Press. ISBN   9781439813836.{{cite book}}: |first1= has generic name (help)
  6. Panda, D; DeLuca, K; Williams, D; Jordan, MA; Wilson, L (4 August 1998). "Antiproliferative mechanism of action of cryptophycin-52: kinetic stabilization of microtubule dynamics by high-affinity binding to microtubule ends". Proceedings of the National Academy of Sciences of the United States of America. 95 (16): 9313–8. Bibcode:1998PNAS...95.9313P. doi: 10.1073/pnas.95.16.9313 . PMC   21335 . PMID   9689077.
  7. Panda, D; Himes, RH; Moore, RE; Wilson, L; Jordan, MA (21 October 1997). "Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1". Biochemistry. 36 (42): 12948–53. doi:10.1021/bi971302p. PMID   9335554.
  8. Zhang, X. (15 March 1996). "Mechanism of Action of Cryptophycin". Journal of Biological Chemistry. 271 (11): 6192–6198. doi: 10.1074/jbc.271.11.6192 . PMID   8626409.
  9. Mooberry, SL; Busquets, L; Tien, G (4 November 1997). "Induction of apoptosis by cryptophycin 1, a new antimicrotubule agent". International Journal of Cancer. 73 (3): 440–8. doi: 10.1002/(sici)1097-0215(19971104)73:3<440::aid-ijc20>3.3.co;2-x . PMID   9359493.
  10. Drew, L; Fine, RL; Do, TN; Douglas, GP; Petrylak, DP (December 2002). "The novel antimicrotubule agent cryptophycin 52 (LY355703) induces apoptosis via multiple pathways in human prostate cancer cells". Clinical Cancer Research. 8 (12): 3922–32. PMID   12473608.
  11. Trimurtulu, Golakoti; Ohtani, Ikuko; Patterson, Gregory M. L.; Moore, Richard E.; Corbett, Thomas H.; Valeriote, Frederick A.; Demchik, Lisa (June 1994). "Total Structures of Cryptophycins, Potent Antitumor Depsipeptides from the Blue-Green Alga Nostoc sp. Strain GSV 224". Journal of the American Chemical Society. 116 (11): 4729–4737. doi:10.1021/ja00090a020.
  12. Field, Jessica J.; Kanakkanthara, Arun; Miller, John H. (September 2014). "Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function". Bioorganic & Medicinal Chemistry. 22 (18): 5050–5059. doi:10.1016/j.bmc.2014.02.035. PMID   24650703.
  13. Bolduc, KL; Larsen, SD; Sherman, DH (22 May 2012). "Efficient, divergent synthesis of cryptophycin unit A analogues". Chemical Communications. 48 (51): 6414. doi:10.1039/c2cc32417b. PMC   3494784 . PMID   22617820.
  14. Weiß, C; Bogner, T; Sammet, B; Sewald, N (2012). "Total synthesis and biological evaluation of fluorinated cryptophycins". Beilstein Journal of Organic Chemistry. 8: 2060–6. doi:10.3762/bjoc.8.231. PMC   3511040 . PMID   23209540.
  15. Magarvey, NA; Beck, ZQ; Golakoti, T; Ding, Y; Huber, U; Hemscheidt, TK; Abelson, D; Moore, RE; Sherman, DH (15 December 2006). "Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts". ACS Chemical Biology. 1 (12): 766–79. doi:10.1021/cb6004307. PMID   17240975.
  16. Ding, Y; Rath, CM; Bolduc, KL; Håkansson, K; Sherman, DH (21 September 2011). "Chemoenzymatic synthesis of cryptophycin anticancer agents by an ester bond-forming non-ribosomal peptide synthetase module". Journal of the American Chemical Society. 133 (37): 14492–5. doi:10.1021/ja204716f. PMC   3174474 . PMID   21823639.